Skip to main content
Log in

A highly sensitive nonenzymatic glucose sensor based on CuO nanowires

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the sensitive determination of glucose using a glassy carbon electrode modified with CuO nanowires and a Nafion film. The structure and morphology of CuO nanowires were established by scanning electron microscopy and X-ray diffraction. The electrochemical performance of the modified electrode was investigated by cyclic voltammetry and chronoamperometry. Compared to a bare glassy carbon electrode, a substantial increase in efficiency of the electrocatalytic oxidation of glucose can be observed. The new glucose sensor displays two useful linear ranges of response towards glucose, is not affected by commonly interfering species, and displays a detection limit as small as 45 nM. The response time is <2 s towards 0.5 mM of glucose. Additional features include high electrocatalytic activity, high sensitivity, excellent selectivity, and good stability.

We present an enzyme-free glucose sensor using a glassy carbon electrode modified with CuO wires and a Nafion film. A substantial increase in efficiency of the electrocatalytic oxidation of glucose can be observed. The new sensor displays two useful linear ranges of response towards glucose and displays a detection limit as small as 45 nM. The response time is <2 s towards 0.5 mM of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Garraugh MG (2009) The chemistry of commercial continuous glucose monitors. Diabetes Technol Ther 11:S14

    Google Scholar 

  2. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814

    Article  CAS  Google Scholar 

  3. Wilson GS, Gifford R (2005) Bissensors for real-time in vivo measurements. Biosens Bioelectron 20:2388

    Article  CAS  Google Scholar 

  4. Asif MH, Ali SM (2010) Functionalised ZnO-nanorod-based selective electrochemical sensor for intra-cellular glucose. Biosens Bioelectron 25:2205

    Article  CAS  Google Scholar 

  5. Gonzalo-Ruiz J, Alonso-Lomillo MA, Munoz FJ (2007) Screen-printed biosensors for glucose determination in grape juice. Biosens Bioelectron 22:1517

    Article  CAS  Google Scholar 

  6. Park SJ, Boo HK, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46

    Article  CAS  Google Scholar 

  7. Zhang N, Wilkop T, Lee S, Cheng Q (2007) Bi-functionalization of a patterned Prussian blue array for amperometric measurement of glucose via two integrated detection schemes. Analyst 132:164

    Article  CAS  Google Scholar 

  8. Xue WG, Cheng GH, Liu H, Du GJ (2010) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens Actuat B: Chem 144:220

    Article  Google Scholar 

  9. Saito T, Watanabe M (1998) Characterization of poly (vinylferrocene-co-2-hydroxyethyl methacrylate) for use as electron mediator in enzymatic glucose sensor. React Funct Polym 37:263

    Article  CAS  Google Scholar 

  10. Dixon BM, Lowry JP, O’Neill RD (2002) Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. J Neurosci Methods 119:135

    Article  CAS  Google Scholar 

  11. Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165

    Article  CAS  Google Scholar 

  12. Mano N, Heller A (2005) Detection of Glucose at 2 fM concentration. Anal Chem 77:729

    Article  CAS  Google Scholar 

  13. Zhang XJ, Gu AX, Wang GF (2010) Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor. Cryst Eng Comm 12:1120

    CAS  Google Scholar 

  14. Kang XH, Mai ZB, Zou XY (2008) Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid. Talanta 74:879

    Article  CAS  Google Scholar 

  15. Cui HF, Ye JS, Zhang WD, Li CM, Luong JH, Sheu FS (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175

    Article  CAS  Google Scholar 

  16. Pang X, He D, Luo S, Cai Q (2009) An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens Actuat B: Chem 137:134

    Article  Google Scholar 

  17. Yang L, Hong T, Hou HQ (2009) Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens Bioelectron 24:3329

    Article  Google Scholar 

  18. Cherevko S, Chung CH (2009) Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens Actuat B: Chem 142:216

    Article  Google Scholar 

  19. Zhou YG, Yang S, Qian QY (2009) Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem Commun 11:216

    Article  CAS  Google Scholar 

  20. Bai Y, Sun Y, Sun C (2008) Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosens Bioelectron 24:579

    Article  CAS  Google Scholar 

  21. Li JJ, Yuan R, Chai YQ (2011) Nonenzymatic glucose sensor based on a glassy carbon electrode modified with chains of platinum hollow nanoparticles and porous gold nanoparticles in a chitosan membrane. Microchim Acta 172:163

    Article  CAS  Google Scholar 

  22. Meng ZC, Zheng JB, Sheng QL (2011) In situ synthesis of thulium(III) hexacyanoferrate(II) nanoparticles and its application for glucose detection. Anal Chim Acta 689:47

    Article  CAS  Google Scholar 

  23. Jia WZ, Guo M, Zheng Z, Yu T, Wang Y, Rodriguez EG (2008) Vertically aligned CuO nanowires based electrode for amperometric detection of hydrogen peroxide. Electranalysis 20:2153

    Article  CAS  Google Scholar 

  24. Reitz E, Jia WZ, Gentile M, Wang Y (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20:2482

    Article  CAS  Google Scholar 

  25. Li YM, Lv XJ, Li JH (2009) High performance binderless TiO2 nanowire arrays electrode for lithium-ion battery. Appl Phys Lett 95:113102

    Article  Google Scholar 

  26. Li YM, Zhang Q, Li JH (2010) Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles. Talanta 83:162

    Article  CAS  Google Scholar 

  27. Zhuang Z, Su X, Yuan H (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126

    Article  CAS  Google Scholar 

  28. Zhang L, Ni YH, Li H (2010) Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim Acta 171:103

    Article  CAS  Google Scholar 

  29. Wang X (2004) Solution-based route to transitional metal oxides one-dimensional nanostructures: synthesis, characterization and their properties. Beijing: Tsinghua University: 111.

  30. Male KB, Hrapovic S, Liu Y, Wang D, Luong JH (2004) Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 516:35

    Article  CAS  Google Scholar 

  31. Hrapovic S, Liu Y, Male KB, Luong JH (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76:1083

    Article  CAS  Google Scholar 

  32. Yao GD, Huo ZB, Jin FM (2011) Direct reduction of copper oxide into copper under hydrothermal conditions, Res Chem Intermed (in press).

  33. Zhang P, Zhao GC, Wei XW (2005) Electrocatalytic oxidation of nitric oxide on an electrode modified with fullerene films. Microchim Acta 149:223

    Article  CAS  Google Scholar 

  34. Bard AJ, Faulkner LR (1982) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  35. Cherevko S, Chung CH (2009) Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens Actuat B: Chem 142:216

    Article  Google Scholar 

  36. Juan MM, Theodore K (1992) Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim Acta 37:1187

    Article  Google Scholar 

  37. Luo MZ, Baldwin RP (1995) Characterization of carbohydrate oxidation at copper electrodes. J Electroanal Chem 387:87

    Article  Google Scholar 

  38. Satheesh TG, Ramachandran T, Nair BP (2010) Single step modification of copper electrode for the highly sensitive and selective non-enzymatic determination of glucose. Microchim Acta 169:49

    Article  Google Scholar 

  39. Jiang F, Wang S, Lin JJ (2011) Aligned SWCNT-copper oxide array as a nonenzymatic electrochemical probe of glucose, Electrochem Commun (in press).

  40. Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402

    Article  CAS  Google Scholar 

  41. Wang GF, Wei Y, Zhang W, Zhang XJ, Fang B, Wang L (2010) Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites. Microchim Acta 168:87

    Article  CAS  Google Scholar 

  42. Cui HF, Ye JS, Zhang WD, Li CM (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175

    Article  CAS  Google Scholar 

  43. Cherevko S, Chung CH (2010) The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Talanta 80:1371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Zhang, L., Zhao, G. et al. A highly sensitive nonenzymatic glucose sensor based on CuO nanowires. Microchim Acta 176, 411–417 (2012). https://doi.org/10.1007/s00604-011-0733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0733-x

Keywords

Navigation