Skip to main content
Log in

Synthesis of p-aminothiophenol-embedded gold/silver core-shell nanostructures as novel SERS tags for biosensing applications

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a novel surface-enhanced Raman scattering (SERS) tag that is based on Au/Ag core-shell nanostructures embedded with p-aminothiophenol. The Au/Ag core-shell sandwich nanostructures demonstrate bright and dark stripe structure and possess very strong SERS activity. Under optimum conditions, the maximum SERS signal was obtained with a 10 nm thick Ag nanoshell, and the enhancement factor is 3.4 × 104 at 1077 cm−1. After conjugation to the antibody of muramidase releasing protein (MRP), the Au/Ag core-shell nanostructures were successfully applied to an SERS-based detection scheme for MRP based on a sandwich type of immunoassay.

A novel SERS tag of p-Aminothiophenol (pATP) embedded Au/Ag core-shell nanostructures were prepared by adding precursor solution (AgNO3) into the original Au nanoparticles (NPs) solution. The synthesized SERS tags, as a biosensers, were further applied to detect a biomarker protein of SS2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ung T, Liz-Marzán LM, Mulvaney P (1999) Redox catalysis using Ag@ SiO2 colloids. J Phys Chem B 103:6770

    Article  CAS  Google Scholar 

  2. Saunders A, Popov I, Banin U (2006) Synthesis of hybrid CdS-Au colloidal nanostructures. J Phys Chem B 110:25421

    Article  CAS  Google Scholar 

  3. Kamata K, Lu Y, Xia Y (2003) Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J Am Chem Soc 125:2384

    Article  CAS  Google Scholar 

  4. Hu JW, Zhang Y, Li JF, Liu Z, Ren B, Sun SG, Tian ZQ, Lian T (2005) Synthesis of Au@Pd core-shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy. Chem Phys Lett 408:354

    Article  CAS  Google Scholar 

  5. Xu W, Xu S, Ji X, Song B, Yuan H, Ma L, Bai Y (2005) Preparation of gold colloid monolayer by immunological identification. Colloids Surf B 40:169

    Article  CAS  Google Scholar 

  6. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) Synthesis of Ag core Au shell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110:4002

    Article  CAS  Google Scholar 

  7. Bao F, Yao JL, Gu RA (2009) Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy. Langmuir 25:10782

    Article  CAS  Google Scholar 

  8. Shao M, Lu L, Wang H, Luo S, Ma D (2009) Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering. Microchim Acta 164:157

    Article  CAS  Google Scholar 

  9. Kang T, Yoo S, Yoon I, Lee S, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10:1189

    Article  CAS  Google Scholar 

  10. Knauer M, Ivleva N, Liu X, Niessner R, Haisch C (2010) Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms. Anal Chem 82:2766

    Article  CAS  Google Scholar 

  11. Wang F, Shen H, Feng J, Yang H (2006) PNA-modified magnetic nanoparticles and their hybridization with single-stranded DNA target: surface enhanced Raman scatterings study. Microchim Acta 153:15

    Article  CAS  Google Scholar 

  12. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanana R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37:1001

    Article  CAS  Google Scholar 

  13. Alvarez-Puebla R, Liz-Marzán L (2010) SERS-based diagnosis and biodetection. Small 6:604

    Article  CAS  Google Scholar 

  14. Lin CC, Yang YM, Chen YF, Yang TS, Chang HC (2008) A new protein a assay based on raman reporter labeled immunogold nanoparticles. Biosens Bioelectron 24:178

    Article  CAS  Google Scholar 

  15. Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha S, Kang K, Oh CH (2007) Biological imaging of HEK293 cells expressing PLC 1 using surface-enhanced Raman microscopy. Anal Chem 79:916

    Article  CAS  Google Scholar 

  16. Kahraman M, Aydm Ö, Çulha M (2009) Oligonucleotide-mediated Au-Ag core-shell nanoparticles. Plasmonics 4:293

    Article  CAS  Google Scholar 

  17. Yang Y, Shi J, Kawamura G, Nogami M (2008) Preparation of Au-Ag, Ag-Au core-shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr Mater 58:862

    Article  CAS  Google Scholar 

  18. Cao Y, Jin R, Mirkin C (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961

    Article  CAS  Google Scholar 

  19. Huang Y, Yang Y, Chen Z, Li X, Nogami M (2008) Fabricating Au-Ag core-shell composite films for surface-enhanced Raman scattering. J Mater Sci 43:5390

    Article  CAS  Google Scholar 

  20. Lim DK, Kim IJ, Nam JM (2008) DNA-embedded Au/Ag core-shell nanoparticles. Chem Commun 42:5312

    Article  Google Scholar 

  21. Staats JJ, Feder I, Okwumabua O, Chengappa MM (1997) Streptococcus suis: past and present. Vet Res Commun 21:381

    Article  CAS  Google Scholar 

  22. Chu CY, Shu SF, Huang JH, Hsu JP, Xue KR (2009) Rapid detection of streptococcus suis serotypes and virulent factors in southern taiwan by multiplex polymerase chain reaction. Taiwan Vet J 35:107

    CAS  Google Scholar 

  23. Wu HM, Han HY, Jin ML, Zhang AD (2009) A novel method to detect muramidase released protein (MRP) antigen of streptococcus sui serotype 2 based on CdSe/ZnS quantum dot probe. Acta Chimi Sin 67:1087

    CAS  Google Scholar 

  24. Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20

    CAS  Google Scholar 

  25. Duan C, Meyerhoff ME (1994) Separation-free sandwich enzyme immunoassays using microporous gold electrodes and self-assembled monolayer/immobilized capture antibodies. Anal Chem 66:1369

    Article  CAS  Google Scholar 

  26. Yakovleva J, Davidsson R, Lobanova A, Bengtsson M, Eremin S, Laurell T, Emneus J (2002) Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal Chem 74:2994

    Article  CAS  Google Scholar 

  27. Jang S, Park J, Shin S, Yoon C, Choi BK, Gong MS, Joo SW (2004) Adsorption of 4-biphenylmethanethiolate on different-sized gold nanoparticle surfaces. Langmuir 20:1922

    Article  CAS  Google Scholar 

  28. Mie G (1908) Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys 25:377

    Article  CAS  Google Scholar 

  29. Thanh NTK, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal Chem 74:1624

    Article  CAS  Google Scholar 

  30. Kreibig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678

    Article  CAS  Google Scholar 

  31. Song C, Wang Z, Zhang R, Yang J, Tan X, Cui Y (2009) Highly sensitive immunoassay based on raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate. Biosens Bioelectron 25:826

    Article  CAS  Google Scholar 

  32. Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G (2000) Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity. Langmuir 16:9722

    Article  CAS  Google Scholar 

  33. Wang Y, Chen H, Dong S, Wang E (2006) Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass. J Chem Phys 124:074709

    Article  Google Scholar 

  34. Zhou Q, Li X, Fan Q, Zhang X, Zheng J (2006) Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface-enhanced Raman spectroscopy. Angew Chem Int Ed 45:3970

    Article  CAS  Google Scholar 

  35. Osawa M, Matsuda N, Yoshii K, Uchida I (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-teller contribution. J Phys Chem 98:12702

    Article  CAS  Google Scholar 

  36. Wang Y, Zou X, Ren W, Wang W, Wang E (2007) Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface. J Phys Chem C 111:3259

    Article  CAS  Google Scholar 

  37. Kim K, Yoon JK (2005) Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate. J Phys Chem B 109:20731

    Article  CAS  Google Scholar 

  38. Hao E, Li S, Bailey RC, Zou S, Schatz GC, Hupp JT (2004) Optical properties of metal nanoshells. J Phys Chem B 108:1224

    Article  CAS  Google Scholar 

  39. Kumar GVP, Shruthi S, Vibha B, Reddy B, Kundu T, Narayana C (2007) Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced raman scattering studies of biomolecules. J Phys Chem C 111:4388–4392

    Article  CAS  Google Scholar 

  40. Zhang P, Guo Y (2009) Surface-enhanced raman scattering inside metal nanoshells. J Am Chem Soc 131:3808

    Article  CAS  Google Scholar 

  41. Jiang Y, Wang A, Tian ZQ, Otto A (2009) Is it possible to observe surface-enhanced raman scattering from buried molecules? J Phys Chem C 113:5526

    Article  CAS  Google Scholar 

  42. Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 77:3261

    Article  CAS  Google Scholar 

  43. Ren B, Lin XF, Yang ZL, Liu GK, Aroca RF, Mao BW, Tian ZQ (2003) Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J Am Chem Soc 125:9598

    Article  CAS  Google Scholar 

  44. Gole A, Sainkar SR, Sastry M (2000) Electrostatically controlled organization of carboxylic acid derivatized colloidal silver particles on amine-terminated self-assembled monolayers. Chem Mater 12:1234

    Article  CAS  Google Scholar 

  45. Zhang DF, Niu LY, Jiang L, Yin PG, Sun LD, Zhang H, Zhang R, Guo L, Yan CH (2008) Branched gold nanochains facilitated by polyvinylpyrrolidone and their SERS effects on p-aminothiophenol. J Phys Chem C 112:16011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support for this research by National Natural Science Foundation of China (20975042), the Program for academic pacesetter of Wuhan (200851430484), Nature Science foundation key project from Hubei Province of China (2008CDA080), International Science and Technology cooperation and Exchange Foundation (2008DFA40270) and the Fundamental Research Funds for the Central Universities of China (2009JC005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heyou Han or Mingqiang Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Z., Chen, K., Lu, D. et al. Synthesis of p-aminothiophenol-embedded gold/silver core-shell nanostructures as novel SERS tags for biosensing applications. Microchim Acta 173, 149–156 (2011). https://doi.org/10.1007/s00604-010-0537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0537-4

Keywords

Navigation