Skip to main content
Log in

A novel method for the analysis of calf thymus DNA based on CdTe quantum dots-Ru(bpy) 2+3 photoinduced electron transfer system

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method has been developed for the rapid determination of calf thymus (ct) DNA that is based on the photoinduced electron transfer (PET) that occurs between CdTe quantum dots and the ruthenium(II)tris-bipyridyl complex. The latter quenches the photoluminescence (PL) of the quantum dots through PET. The Stern-Volmer quenching constant is 2,500 L mol−1. The intensity of the PL the system is recovered in the presence of ct DNA, and relative recovered PL intensity is linearly proportional to the concentration of ct-DNA. The dynamic range is from 17 µM to 1.5 mM of DNA, and the detection limit (at S/N = 3) is 5.7 µM. The relative standard deviation (at 0.5 mM of ct-DNA) is 4.1% (n = 11). A possible reaction mechanism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li WY, Xu JG, Guo XQ, Zhu QZ, Zhao YB (1997) A novel fluorometric method for DNA and RNA determination. Anal Lett 30:527–536

    CAS  Google Scholar 

  2. Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115:8547–8553

    Article  CAS  Google Scholar 

  3. Xu C, He PG, Fang YZ (2000) Electrochemical labeled DNA probe for the detection of sequence-specific DNA. J Anal Chim Acta 411:31–36

    Article  CAS  Google Scholar 

  4. Sun W, Li YZ, Gao HW, Jiao K (2009) Direct electrochemistry of double stranded DNA on ionic liquid modified carbon paste electrode. Microchim Acta 165:313–317

    Article  CAS  Google Scholar 

  5. Wei MY, Guo LH, Chen H (2006) Determination of surface-immobilized double-stranded DNA using a metallointercalator and catalytic voltammetry. Microchim Acta 155:409–414

    Article  CAS  Google Scholar 

  6. Yi L, Zhao HC, Sun CY, Chen S, Jin LP (2003) Flow-injection chemiluminescence study of Ce(IV)-Na2SO3-Tb(III)-fluoquinolone antibiotic system with DNA. Spectrochim Acta Part A: Mol Biomol Spectrosc 59:2541–2546

    Article  Google Scholar 

  7. Chen QY, Li DH, Yang HH, Zhu QZ, Xu JG, Zhao Y (1999) Interaction of a novel red-region fluorescent probe, Nile Blue, with DNA and its application to nucleic acids assay. Analyst 124:901–906

    Article  CAS  Google Scholar 

  8. Wang W, Li ADQ (2007) Design and synthesis of efficient fluorescent dyes for incorporation into DNA backbone and biomolecule detection. Bioconjugate Chem 18:1032–1052

    CAS  Google Scholar 

  9. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  10. Bruchea M, Moronne M, Gin P, Weiss S, Alivisatos P (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  11. Han HY, Sheng ZH, Liang JG (2006) A novel method for the preparation of water-soluble and small-size CdSe quantum dots. Mater Lett 60:3782–3785

    Article  CAS  Google Scholar 

  12. Sutherland AJ (2002) Quantum dots as luminescent probes in biological systems. Curr Opin Solid State Mater Sci 6:365–370

    Article  CAS  Google Scholar 

  13. Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831

    Article  Google Scholar 

  14. Zhao D, Chan WH, He ZK, Qiu T (2009) Quantum dot-Ruthenium complex dyads: recognition of double-strand DNA through dual-color fluorescence detection. Anal Chem 81:3537–3543

    Article  CAS  Google Scholar 

  15. Yildiz I, Tomasulo M, Raymo FM (2006) A mechanism to signal receptor-substrate interactions with luminescent quantum dots. Proc Natl Acad Sci USA 103:11457–11460

    Article  CAS  Google Scholar 

  16. Yu WW, Qu L, Guo W, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  17. Zhang LJ, Xu C, Li BX (2009) Simple and sensitive detection method for chromium (VI) in water using glutathione-capped CdTe quantum dots as fluorescent probes. Microchim Acta 166:61–68

    Article  CAS  Google Scholar 

  18. Wu HM, Liang JG, Han HY (2008) A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta 161:81–86

    Article  CAS  Google Scholar 

  19. Sun JF, Liu LH, Ren CL, Chen XG, Hu ZD (2008) A feasible method for the sensitive and selective determination of vitamin B1 with CdSe quantum dots. Microchim Acta 163:271–276

    Article  CAS  Google Scholar 

  20. Brus LE (1984) Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  CAS  Google Scholar 

  21. Peng H, Zhang LJ, Kjallman THM, Soeller C, Travas-Sejdic J (2007) DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA. J Am Chem Soc 129:3048–3049

    Article  CAS  Google Scholar 

  22. Guldi DM, Zilbermann I, Anderson G, Kotov NA, Tagmatarchis N, Prato M (2004) Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles. J Am Chem Soc 126:14340–14341

    Article  CAS  Google Scholar 

  23. Guldi DM, Rahman GMA, Sgobba V, Kotov NA, Bonifazi D, Prato M (2006) CNT-CdTe versatile donor-acceptor nanohybrids. J Am Chem Soc 128:2315–2323

    Article  CAS  Google Scholar 

  24. Liu JY, Chao H, Yao HJ, Tan LF, Yuan YX, Ji LN (2005) Ruthenium(II) complexes containing asymmetric 2-(pyrazin-2-yl)naphthoimidazole: syntheses, characterization, DNA-binding and photocleavage studies. Inorg Chim Acta 358:1904–1910

    Article  CAS  Google Scholar 

  25. Chouai A, Wicke SE, Turro C, Bacsa J, Dunbar KR, Wang D, Thummel RP (2005) Ruthenium(II) complexes of 1, 12-diazaperylene and their interactions with DNA. Inorg Chem 44:5996–6003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support for this research by National Natural Science Foundation of China (20675034 and 20975042), the Program for academic pacesetter of Wuhan (200851430484), Genetically Modified major projects (2009ZX08012-015B) and Nature Science foundation key project from Hubei Province of China (2008CDA080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyou Han.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, D., Sheng, Z. & Han, H. A novel method for the analysis of calf thymus DNA based on CdTe quantum dots-Ru(bpy) 2+3 photoinduced electron transfer system. Microchim Acta 168, 341–345 (2010). https://doi.org/10.1007/s00604-010-0289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0289-1

Keywords

Navigation