Skip to main content
Log in

Evaluation of DNA damage and antioxidant capacity of sericin by a DNA electrochemical biosensor based on dendrimer-encapsulated Au-Pd/chitosan composite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Au-Pd bimetallic nanoparticles were prepared in the presence of an amine-terminated dendrimer of a fourth generation poly(amidoamine) type. A biosensor was fabricated by immobilizing dsDNA on a thin layer of a dendrimer-encapsulated bimetallic nanoparticles (Au-Pd) in a chitosan composite on a glassy carbon electrode. The biosensor was evaluated by square wave voltammetry for the determination of the oxidative damage of immobilized DNA and the antioxidant capacity of sericin. The biosensor is shown to be suitable for the rapid detection of DNA damage and the assessment of the antioxidant capacity of sericin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mello LD, Kubota LT (2007) Biosensors as a tool for the antioxidant status evaluation. Talanta 72:335

    Article  CAS  Google Scholar 

  2. Ames BN (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221:1256

    Article  CAS  Google Scholar 

  3. Niki E, Shimaski H, Mino M (1994) Antioxidantism-free radical and biological defence. Gakkai Syuppn Center, Tokyo: 3

  4. Kaur C, Kapoor HC (2001) Antioxidants in fruits and vegetables-the millennium’s health. Int J Food Sci Tech 36:703

    Article  CAS  Google Scholar 

  5. Yang CS (1997) Inhibition of carcinogenesis by tea. Nature 389:134

    Article  CAS  Google Scholar 

  6. Sun B, Fukuhara M (1997) Effects of co-administration of butylated hydroxytoluene, butylated hydroxyanisole and flavonoids on the activation of mutagens and drug-metabolizing enzymes in mice. Toxicology 122:61

    Article  CAS  Google Scholar 

  7. Hirose M, Takesada Y, Tanaka H, Tamano S, Kato T, Shirai T (1998) Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model. Carcinogenesis 19:207

    Article  CAS  Google Scholar 

  8. Mello LD, Sotomayor M, Kubota LT (2003) HRP-based amperometric biosensor for the polyphenols determination in vegetables extract. Sens Actuator B 96:636

    Article  Google Scholar 

  9. Campanella L, Martini E, Tomassetti M (2005) Antioxidant capacity of the algae using a biosensor method. Talanta 66:902

    Article  CAS  Google Scholar 

  10. Wu JH, Wang Z, Xu SY (2007) Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem 103:1255

    Article  CAS  Google Scholar 

  11. Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M (1998) Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem 62:145

    Article  CAS  Google Scholar 

  12. Zhaorigetu S, Sasaki M, Watanabe H, Kato N (2001) Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1, 2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Biosci Biotechnol Biochem 65:2181

    Article  CAS  Google Scholar 

  13. Sasaki M, Yamada H, Kato N (2000) Consumption of silk protein, sericin elevates intestinal absorption of zinc, iron, magnesium and calcium in rats. Nutr Res 20:1505

    Article  CAS  Google Scholar 

  14. Zhaorigetu S, Sasaki M, Kato N (2007) Consumption of sericin suppresses colon oxidative stress and aberrant crypt foci in 1, 2-dimethylhydrazine-treated rats by colon undigested sericin. J Nutr Sci Vitaminol 53:297

    Article  CAS  Google Scholar 

  15. Sarovart S, Sudatis B, Meesilpa P, Grady BP, Magaraphan R (2003) The use of sericin as an antioxidant and antimicrobial for polluted air treatment. Rev Adv Mater Sci 5:193

    CAS  Google Scholar 

  16. Cadet J, Douki T, Gasparutto D, Ravanat JL (2003) Oxidative damage to DNA: formation, measurement and biochemical features. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 531:5

    Article  CAS  Google Scholar 

  17. Korbut O, Bučková M, Tarapčik P, Labuda J J, Gründler P (2001) Damage to DNA indicated by an electrically heated DNA-modified carbon paste electrode. J Electroanal Chem 506:143

    Article  CAS  Google Scholar 

  18. Collins A (2000) Comparison of different methods of measuring 8-oxoguanine as a marker of oxidative DNA damage. Free Radical Res 32:333

    Article  CAS  Google Scholar 

  19. Ján L, Renáta O, Júlia G (2009) DNA-based biosensor for the detection of strong damage to DNA by the quinazoline derivative as a potential anticancer agent. Microchim Acta 164:371

    Article  Google Scholar 

  20. Zheng Y, Yang C, Pu W, Zhang J (2009) Charbon nanotube-based DNA biosensor for monitoring phenolic pollutants. Microchim Acta 166:21

    Article  CAS  Google Scholar 

  21. Mello LD, Hernandez S, Marrazza G, Mascini M, Kubota LT (2006) Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor. Biosens Bioelectron 21:1374

    Article  CAS  Google Scholar 

  22. Liu J, Su B, Lagger G, Tacchini P, Girault HH (2006) Antioxidant redox sensors based on DNA modified carbon screen-printed electrodes. Anal Chem 78:6879

    Article  CAS  Google Scholar 

  23. Rusling JF (2004) Sensors for toxicity of chemicals and oxidative stress based on electrochemical catalytic DNA oxidation. Biosens Bioelectron 20:1022

    Article  CAS  Google Scholar 

  24. Yang J, Yang T, Feng Y, Jiao K (2007) A DNA electrochemical sensor based on nanogold-modified poly-2, 6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Anal Biochem 365:24

    Article  CAS  Google Scholar 

  25. Yoon HC, Kim HS (2000) Multilayered assembly of dendrimers with enzymes on gold: thickness-controlled biosensing interface. Anal Chem 72:922

    Article  CAS  Google Scholar 

  26. Zhu N, Gu Y, Chang Z, He P, Fang Y (2006) PAMAM dendrimers-based DNA biosensors for electrochemical detection of DNA hybridization. Electroanalysis 18:2107

    Article  CAS  Google Scholar 

  27. Li A, Yang F, Ma Y, Yang X (2007) Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens Bioelectron 22:1716

    Article  CAS  Google Scholar 

  28. Shi W, Ai S, Li J, Zhu L (2008) Electrochemical biosensor based on dendrimer Immobilized deoxyribonucleic acid. Chinese J Anal Chem 36:335

    Article  CAS  Google Scholar 

  29. Li G, Li X, Wan J, Zhang S (2009) Dendrimers-based DNA biosensors for highly sensitive electrochemical detection of DNA hybridization using reporter probe DNA modified with Au nanoparticles. Biosens Bioelectron 24:3281

    Article  CAS  Google Scholar 

  30. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648

    Article  CAS  Google Scholar 

  31. Qian L, Yang X (2008) Dendrimer films as matrices for electrochemical fabrication of novel gold/palladium bimetallic nanostructures. Talanta 74:1649

    Article  CAS  Google Scholar 

  32. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1986) Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 19:2466

    Article  CAS  Google Scholar 

  33. Esumi K, Suzuki A, Yamahira A, Torigoe K (2000) Role of poly (amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver. Langmuir 16:2604

    Article  CAS  Google Scholar 

  34. Kim YG, Oh SK, Crooks RM (2004) Preparation and characterization of 1 2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem Mater 16:167

    Article  CAS  Google Scholar 

  35. Scott RWJ, Ye H, Henriquez RR, Crooks RM (2003) Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles. Chem Mater 15:3873

    Article  CAS  Google Scholar 

  36. Lebedeva OV, Kim BS, Gröhn F, Vinogradova OI (2007) Dendrimer-encapsulated gold nanoparticles as building blocks for multilayer microshells. Polymer 48:5024

    Article  CAS  Google Scholar 

  37. Xu C, Cai H (2001) Immobilization of ssDNA on chitson modified electrode. Fresenius’ J Anal Chem 369:428

    Article  CAS  Google Scholar 

  38. Xu Y, Jiang Y, Cai H, He PG, Fang YZ (2004) Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode. Anal Chim Acta 516:19

    Article  CAS  Google Scholar 

  39. Dharuman V, Grunwald T, Nebling E, Albers J, Blohm L, Hintsche R (2005) Label-free impedance detection of oligonucleotide hybridisation on interdigitated ultramicroelectrodes using electrochemical redox probes. Biosens Bioelectron 21:645

    Article  CAS  Google Scholar 

  40. Ghanbari Kh, Bathaie SZ, Mousavi MF (2008) Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosens Bioelectron 23:1825

    Article  CAS  Google Scholar 

  41. Lloyd DR, Phillips DH (1999) Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 424:23

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 20775044), and the Natural Science Foundation of Shandong Province (No. Y2006B20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyun Ai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, P., Ai, S., Yin, H. et al. Evaluation of DNA damage and antioxidant capacity of sericin by a DNA electrochemical biosensor based on dendrimer-encapsulated Au-Pd/chitosan composite. Microchim Acta 168, 347–354 (2010). https://doi.org/10.1007/s00604-009-0280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0280-x

Keywords

Navigation