Skip to main content

Advertisement

Log in

Mechanical Behavior of Shale at Different Strain Rates

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The strain rate-dependent mechanical behavior of shale is characterized using triaxial compression tests under a constant confining pressure of 50 MPa and axial strain rates \(\dot{\varepsilon }_{1}\) ranging from 5 × 10−6 s−1 to 1 × 10−3 s−1. This study is conducted on the Longmaxi shale from Dayou in China, which is predominantly composed of brittle minerals including quartz (55%), albite (15%) and cristobalite (3%). The experimental results show that higher axial loading strain rates \(\dot{\varepsilon }_{1}\) lead to higher elastic modulus and higher peak shear strength, both following exponential relationships with \(\dot{\varepsilon }_{1}\). When \(\dot{\varepsilon }_{1} \le 1 \times 10^{ - 5} {\text{s}}^{ - 1}\), failure results in a single linear fracture, whereas a more complex multiple crisscrossing fracture network is formed when \(\dot{\varepsilon }_{1} \ge 1 \times 10^{ - 4} {\text{s}}^{ - 1}\). Failure in shale specimens can be described by a damage parameter \(D\), which is strongly affected by the axial strain \(\varepsilon_{{1{\text{s}}}}\). In addition, the strain rate \(\dot{\varepsilon }_{1}\) had different effects on \(D\), which also depends on axial strain \(\varepsilon_{{1{\text{s}}}}\). Energy accumulation and dissipation are also closely related to \(\dot{\varepsilon }_{1}\) with the total absorbed energy \(U_{\text{A}}\), the recoverable elastic strain energy \(U_{\text{A}}^{\text{e}}\) and the dissipated energy \(U_{\text{A}}^{\text{d}}\) at the peak stress increasing with \(\dot{\varepsilon }_{1}\). As for the total energy accumulation \(U_{\text{A}}\), the recoverable elastic energy \(U_{\text{A}}^{\text{e}}\) decreases while the dissipated energy \(U_{\text{A}}^{\text{d}}\) increases with increasing strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abousleiman YN, Hoang SK, Tran MH (2010) Mechanical characterization of small shale samples subjected to fluid exposure using the inclined direct shear testing device. Int J Rock Mech Min Sci 47(3):355–367

    Article  Google Scholar 

  • Al-Bazali T, Zhang J, Chenevert ME, Sharma MM (2008) Experimental and numerical study on the impact of strain rate on failure characteristics of shales. J Pet Sci Eng 60(3):194–204

    Article  Google Scholar 

  • Al-Douri A, Sengupta D, El-Halwagi M (2017) Shale gas monetization—a review of downstream processing to chemicals and fuels. J Nat Gas Sci Eng 45:436–455

    Article  Google Scholar 

  • Arora S, Mishra B (2015) Investigation of the failure mode of shale rocks in biaxial and triaxial compression tests. Int J Rock Mech Min Sci 79:109–123

    Article  Google Scholar 

  • Atkinson C, Smelser RE, Sanchez J (1982) Combined mode fracture via the cracked Brazilian disk test. Int J Fract 18(4):279–291

    Google Scholar 

  • Awaji H, Sato S (1978) Combined mode fracture toughness measurement by the disk test. J Eng Mater Tech 100(2):175–182

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2008) On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Eng Fract Mech 75(16):631–4641

    Article  Google Scholar 

  • Bažant ZP, Caner FC (2014) Comminution of solids due to kinetic energy of high shear strain rate: implications for shock and shale fracturing. In: Shale energy engineering 2014: Technical Challenges, Environmental Issues, and Public Policy, pp 144–150

  • Chang SH, Lee CI, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66(1):79–97

    Article  Google Scholar 

  • Chen W, Konietzky H, Tan X, Frühwirt T (2016) Pre-failure damage analysis for brittle rocks under triaxial compression. Comp Geotech 74:45–55

    Article  Google Scholar 

  • Cho JW, Kim H, Jeon S, Min KB (2012) Deformation and strength anisotropy of Asian gneiss, Boryeong shale, and Yeoncheon schist. Int J Rock Mech Min Sci 50:158–169

    Article  Google Scholar 

  • Cook JM, Sheppard MC, Houwen OH (1991) Effects of strain rate and confining pressure on the deformation and failure of shale. SPE Drill Eng 6(02):100–104

    Article  Google Scholar 

  • Dewhurst DN, Hennig AL (2003) Geomechanical properties related to top seal leakage in the Carnarvon Basin, Northwest Shelf, Australia. Pet Geosci 9(3):255–263

    Article  Google Scholar 

  • Dokhani V, Yu M, Bloys B (2016) A wellbore stability model for shale formations: accounting for strength anisotropy and fluid induced instability. J Nat Gas Sci Eng 32:174–184

    Article  Google Scholar 

  • Gong FQ, Zhao GF (2014) Dynamic indirect tensile strength of sandstone under different loading rates. Rock Mech Rock Eng 47(6):2271

    Article  Google Scholar 

  • GT/T23561 (2009) The Professional Standards Compilation Group of Peoples Republic of China. In: Methods for determining the physical and mechanical properties of coal and rock. Standards Press of China, Beijing

  • Guo X, Li Y, Liu R, Wang Q (2014) Characteristics and controlling factors of the micropore structures of the Longmaxi Shale in the Jiaoshiba area, Sichuan basin. Nat Gas Ind B 1(2):165–171

    Article  Google Scholar 

  • Heng S, Guo Y, Yang C, Daemen JJ, Li Z (2015) Experimental and theoretical study of the anisotropic properties of shale. Int J Rock Mech Min Sci 74:58–68

    Article  Google Scholar 

  • Hokka M, Black J, Tkalich D, Fourmeau M, Kane A, Hoang NH, Lic CC, Chen WW, Kuokkala VT (2016) Effects of strain rate and confining pressure on the compressive behavior of Kuru granite. Int J Impact Eng 91:183–193

    Article  Google Scholar 

  • Holt RM, Fjær E, Stenebråten JF, Nes OM (2015) Brittleness of shales: relevance to borehole collapse and hydraulic fracturing. J Pet Sci Eng 131:200–209

    Article  Google Scholar 

  • Hou P, Gao F, Yang Y, Zhang X, Zhang Z (2015) Effect of the layer orientation on mechanics and energy evolution characteristics of shales under uniaxial loading. Int J Min Sci Tech 26(5):857–862

    Article  Google Scholar 

  • Hudson J, Harrison J, Popescu M (1997) Engineering rock mechanics: an introduction to the principles. Appl Mech Rev 55(2):72

    Google Scholar 

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: International Society for Rock Mechanics, Commission on Testing Methods

  • Jarvie DM, Hill RJ, Ruble TE, Pollastro RM (2007) Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull 91(4):475–499

    Article  Google Scholar 

  • Josh M, Esteban L, Delle-Piane C, Sarout J, Dewhurst DN, Clennell MB (2012) Laboratory characterization of shale properties. J Pet Sci Eng 88:107–124

    Article  Google Scholar 

  • Lemaitre J (1984) How to use damage mechanics. Nucl Eng Des 80(2):233–245

    Article  Google Scholar 

  • Li N, Wang G (2016) Shale gas sweet spot identification and precise geo-steering drilling in Weiyuan Block of Sichuan Basin, SW China. Pet Explor Dev 43(6):1067–1075

    Article  Google Scholar 

  • Li HB, Zhao J, Li TJ (2000) Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads. Int J Rock Mech Min Sci 37(6):923–935

    Article  Google Scholar 

  • Ma TS, Chen P (2014) Study of meso-damage characteristics of shale hydration based on CT scanning technology. Pet Explor Dev 41(2):249–256

    Article  Google Scholar 

  • Ma X, Xie J (2018) The progress and prospects of shale gas exploration and development in southern sichuan basin, sw china. Pet Explor Dev 45(1):172–182

    Article  Google Scholar 

  • Ma T, Yang C, Chen P, Wang X, Guo Y (2016) On the damage constitutive model for hydrated shale using CT scanning technology. J Nat Gas Sci Eng 28:204–214

    Article  Google Scholar 

  • Mahanta B, Tripathy A, Vishal V, Singh TN, Ranjith PG (2016) Effects of strain rate on fracture toughness and energy release rate of gas shales. Eng Geol 218:39–49

    Article  Google Scholar 

  • Mikhalyuk AV, Zakharov VV (1997) Dissipation of dynamic-loading energy in quasi-elastic deformation processes in rocks. J Appl Mech Tech Phys 38(2):312–318

    Article  Google Scholar 

  • Morgan SP, Einstein HH (2014) The effect of bedding plane orientation on crack propagation and coalescence in shale. In: 48th US Rock Mechanics/Geomechanics Symposium American Rock Mechanics Association June 1–4, 2014, Minneapolis, MN, Paper No. 7727

  • Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture. Springer Science & Business Media, Amsterdam, p 380

    Book  Google Scholar 

  • Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behaviour of Tournemire shale. Intl J Rock Mech Min Sci 34(1):3–16

    Article  Google Scholar 

  • Olsson WA (1991) The compressive strength of tuff as a function of strain rate from 10−6 to 10−3/sec. Intl J Rock Mech Min Sci Geomech Abs 28(1):115–118

    Article  Google Scholar 

  • Osiptsov AA (2017) Fluid mechanics of hydraulic fracturing: a review. J Pet Sci Eng 156:513–535

    Article  Google Scholar 

  • Peng R, Ju Y, Wang JG, Xie H, Gao F, Mao L (2015) Energy dissipation and release during coal failure under conventional triaxial compression. Rock Mech Rock Eng 48(2):509–526

    Article  Google Scholar 

  • Peng TA, Yan JI, Bing HO, Ke HA, Yingcao ZH, Shangzhi ME (2017) Experimental investigation on fracture initiation and non-planar propagation of hydraulic fractures in coal seams. Pet Explor Dev 44(3):470–476

    Article  Google Scholar 

  • Raj R, Ghandehariun S, Kumar A, Ma LW (2016) A well-to-wire life cycle assessment of Canadian shale gas for electricity generation in China. Energy 111:642–652

    Article  Google Scholar 

  • Rickman R, Mullen MJ, Petre JE, Grieser WV, Kundert D. (2008). A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. In: SPE annual technical conference exhibition, society of petroleum engineers Paper No. SPE 115258

  • Rybacki E, Meier T, Dresen G (2016) What controls the mechanical properties of shale rocks?–Part II: brittleness. J Petrol Sci Eng 144:39–58

    Article  Google Scholar 

  • Saksala T, Hokka M, Kuokkala VT (2017) Numerical 3D modeling of the effects of strain rate and confining pressure on the compressive behavior of Kuru granite. Comput Geotech 88:1–8

    Article  Google Scholar 

  • Sedman A, Talviste P, Mõtlep R, Jõeleht A, Kirsimäe K (2012) Geotechnical characterization of Estonian oil shale semi-coke deposits with prime emphasis on their shear strength. Eng Geol 131:37–44

    Article  Google Scholar 

  • Seiphoori A, Moradian Z, Einstein HH, Whittle AJ (2016) Microstructural characterization of opalinus shale. In: Proceedings of 50th U.S. Rock Mechanics/Geomechanics Symposium, June 26–29 2016, Houston, TX, Paper No. 783

  • Shetty DK, Rosenfield AR, Duckworth WH (1987) Mixed-mode fracture in biaxial stress state: application of the diametral-compression (Brazilian disk) test. Eng Fract Mech 26(6):825–840

    Article  Google Scholar 

  • Simpson NDJ, Stroisz A, Bauer A, Vervoort A, Holt R M (2014) Failure mechanics of anisotropic shale during Brazilian tests. In: 48th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, June 1–4, 2014, Minneapolis, MN, Paper No. 7399

  • Solecki R, Conant RJ (2003) Advanced mechanics of materials. University Press London and Oxford, UK, p 784

    Google Scholar 

  • Steffler ED, Epstein JS, Conley EG (2004) Energy partitioning for a crack under remote shear and compression. Intl J Fract 120(4):563–580

    Article  Google Scholar 

  • Swan G, Cook J, Bruce S, Meehan R (1989) Strain rate effects in Kimmeridge Bay shale. Intl J Rock Mech Min Sci Geomech Abs 26(2):135–149

    Article  Google Scholar 

  • Vachaparampil A, Ghassemi A (2017) Failure characteristics of three shales under true-triaxial compression. Int J Rock Mech Min Sci 100:151–159

    Article  Google Scholar 

  • Vernik L, Nur A (1992) Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics 57(5):727–735

    Article  Google Scholar 

  • Vervoort A, Min KB, Konietzky H, Vervoorta A, Konietzky H, Cho JW, Debecker B, Dinh QD, Frühwirt T, Tavallalia A (2014) Failure of transversely isotropic rock under Brazilian test conditions. Intl J Rock Mech Min Sci 70:343–352

    Article  Google Scholar 

  • Wang Y, Zhai G, Bao S, Ren S, Mingna GE, Zhi Z (2015) Latest progress and trend forecast of china’s shale gas exploration and development. Acta Geol Sin 89(s1):211–213

    Article  Google Scholar 

  • Wang J, Xie LZ, Xie HP, Ren L, He B, Li CB (2016) Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests. J Nat Gas Sci Eng 36:1120–1129

    Article  Google Scholar 

  • Xie H, Li L, Peng R, Ju Y (2009) Energy analysis and criteria for structural failure of rocks. J Rock Mech Geotech Eng 1(1):11–20

    Article  Google Scholar 

  • Xu C, Fowell RJ (1994) Stress intensity factor evaluation for cracked chevron notched Brazilian disc specimens. Int J Rock Mech Min Sci Geomech Abs 31(2):157–162

    Article  Google Scholar 

  • Yang Z, Hou LH, Tao SZ, Cui JW, Wu ST, Lin SH, Pan SQ (2015) Formation conditions and sweet spot evaluation of tight oil and shale oil. Pet Explor Dev 42(5):555–565

    Article  Google Scholar 

  • Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min Sci 37(5):745–762

    Article  Google Scholar 

  • Zhang SW, Shou KJ, Xian XF, Zhou JP, Liu GJ (2018) Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests. Tunnel. Undergr Space Technol 71:298–308

    Article  Google Scholar 

  • Zhao GY, Dai B, Dong LJ, Yang C (2015) Energy conversion of rocks in process of unloading confining pressure under different unloading paths. Trans Nonferrous Met Soc China 25(5):1626–1632

    Article  Google Scholar 

  • Zhou W (1990) Advanced rock mechanics. Water and Power Press, Beijing, p 219 (in Chinese)

    Google Scholar 

  • Zou C, Dong D, Wang Y, Li X, Huang J, Wang S, Guan Q, Zhang C, Wang H, Liu H, Bai W, Liang F, Lin W, Zhao Q, Liu D, Yang Z, Liang P, Sun S, Qiu Z (2015) Shale gas in China: characteristics, challenges and prospects (I). Pet Explor Dev 42(6):689–701

    Article  Google Scholar 

  • Zou C, Dong D, Wang Y, Xinjing LI, Huang J, Wang S et al (2016) Shale gas in china: characteristics, challenges and prospects (II). Petr Explor Dev 42(6):753–767

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the China Scholarship Council project, the National Natural Science Foundation of China (Grant No. 51574218, 51678171, 51608139, U1704243 and 51709113), National Science and Technology Major Project of China (2016ZX05060-004 and 2017ZX05036-003), Guangdong Science and Technology Department (Grant No. 2015B020238014), Guangzhou Science Technology and Innovation Commission (Grant No. 201604016021), Mega project of science research (Grant No. 2016ZX05060017), The Ministry of Science and Technology of Petroleum Engineering (Grant No. P11015), the Strategic Pilot Science and Technology of Chinese Academy of Sciences (B) (Grant No. XDB10040200)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqi Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Gutierrez, M., Ma, S. et al. Mechanical Behavior of Shale at Different Strain Rates. Rock Mech Rock Eng 52, 3531–3544 (2019). https://doi.org/10.1007/s00603-019-01807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01807-7

Keywords

Navigation