Skip to main content
Log in

Statistical Analysis of Rock Fracture Toughness Data Obtained from Different Chevron Notched and Straight Cracked Mode I Specimens

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

In laboratory fracture toughness studies, the crack growth resistance of rock materials may be influenced by different factors such as specimen geometry, loading conditions, and also the type of pre-notch cut in the test sample. In this paper, a large number of mode I fracture toughness experiments are conducted on an Iranian white rock “Harsin marble” with six different mode I specimens. The selected test specimens are in the shape of cylindrical rod, rectangular beam, and circular Brazilian disk containing either chevron notch or straight crack. The effect of specimen geometry and pre-notch type was investigated statistically, and it was found that the average fracture toughness values of notched specimens were higher than those of the similar specimens but containing straight crack. Meanwhile, the scatters of fracture toughness data for chevron notched specimens were smaller than those for the straight cracked samples. For each set of experimental fracture toughness results, probability of fracture was investigated using two- and three-parameter Weibull statistical distributions. Comparison of the Weibull fitted curves for chevron notched and straight cracked samples with the same geometries demonstrated that the discrepancy between the corresponding curves can be described with a good accuracy by a simple shift factor. In addition, using the extended maximum tangential strain criterion which takes into account the influence of both KI and T-stress terms, the statistical fracture toughness data of chevron notched specimens were predicted in terms of the Weibull distribution parameters of the straight cracked specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

a :

Crack length

a m :

Critical crack length

a 0 :

Initial length of chevron notch

a 1 :

Final length of chevron notch

A min :

Dimensionless critical stress intensity factor of the CB specimen

B :

Thickness of specimen

B r :

Biaxiality ratio

C v :

Dimensionless compliance of specimen

D :

Diameter of specimen

E :

Modulus of elasticity

f :

Geometry factor of the SENB specimen

F :

Load

F max :

Fracture load

i :

Number of test specimen

k :

Shear transfer function

K :

Stress intensity factor

K c :

Fracture toughness

K Ic :

Mode I fracture toughness

K If :

Mode I fracture resistance

K min :

Location parameter of fracture resistance distribution

K 0 :

Scale parameter of fracture resistance distribution

L :

Length of specimen

m :

Shape parameter for describing the scatter of KIf

n :

Total number of tests for each specimen

N I :

Shape or geometry factor of the SCCBD specimen

P f :

Failure probability

r :

Distance from the crack tip

r c :

Critical distance from the crack tip

R :

Radius of specimen

S :

Support span

T c :

Critical value of T-stress

u :

Load-point displacement

W :

Height of the CNBB and SENB specimens

Y *min :

Normalized critical stress intensity factor of CCNBD specimen

α r :

Normalized critical distance

ε c :

Critical value of tangential strain

ε θθ :

Tangential strain

θ :

Chevron notch angle

θ 0 :

Direction of fracture in polar coordinates

λ :

Shift factor between two sets of data

ν :

Poisson’s ratio

σ :

Characteristic stress in the specimen

σ t :

Tensile strength of rock material

CB:

Chevron bend specimen

CCNBD:

Cracked chevron notched Brazilian disk specimen

CNBB:

Chevron notched bend beam

EMTSN:

Extended maximum tangential strain criterion

FPZ:

Fracture process zone

ISRM:

International Society for Rock Mechanics

MTSN:

Maximum tangential strain criterion

SCCBD:

Straight center cracked Brazilian disk specimen

SECRBB:

Single edge cracked round bar bend specimen

SENB:

Single edge notched beam specimen

SIF:

Stress intensity factor

References

  • Aarseth KA, Prestløkken E (2003) Mechanical properties of feed pellets: Weibull analysis. Biosys Eng 84(3):349–361

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR (2010) Geometry effects on fracture behaviour of polymethyl methacrylate. Mater Sci Eng, A 527(3):526–530

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR (2014) Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading—a statistical approach. Theor Appl Fract Mech 69:17–25

    Article  Google Scholar 

  • Aliha MRM, Ashtari R, Ayatollahi MR (2006) Mode I and mode II fracture toughness testing for a coarse grain marble. In: Applied mechanics and materials, vol 5. Trans Tech Publications, pp 181–188. https://doi.org/10.4028/www.scientific.net/AMM.5-6.181

  • Aliha MRM, Fattahi Amirdehi HR (2017) Fracture toughness prediction using Weibull statistical method for asphalt mixtures containing different air void contents. Fatigue Fract Eng Mater Struct 40(1):55–68

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Smith DJ, Pavier MJ (2010) Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech 77(11):2200–2212

    Article  Google Scholar 

  • Aliha MRM, Sistaninia M, Smith DJ, Pavier MJ, Ayatollahi MR (2012) Geometry effects and statistical analysis of mode I fracture in guiting limestone. Int J Rock Mech Min 51:128–135

    Article  Google Scholar 

  • Aliha MRM, Hosseinpour GHR, Ayatollahi MR (2013a) Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mech Rock Eng 46(5):1023–1034

    Article  Google Scholar 

  • Aliha MRM, Pakzad R, Ayatollahi MR (2013b) Numerical analyses of a cracked straight-through flattened Brazilian disk specimen under mixed-mode loading. J Eng Mech 140(1):219–224

    Article  Google Scholar 

  • Aliha MRM, Bahmani A, Akhondi SH (2015a) Determination of mode III fracture toughness for different materials using a new designed test configuration. Mater Des 86:863–871

    Article  Google Scholar 

  • Aliha MRM, Bahmani A, Akhondi SH (2015b) Numerical analysis of a new mixed mode I/III fracture test specimen. Eng Fract Mech 134:95–110

    Article  Google Scholar 

  • Aliha MRM, Mahdavi E, Ayatollahi MR (2016) The influence of specimen type on tensile fracture toughness of rock materials. Pure appl Geophys 174:1–17

    Google Scholar 

  • Astm E (1997) 399–90: Standard test method for plane-strain fracture toughness of metallic materials. Ann book ASTM stand 3(01):506–536

    Google Scholar 

  • Atkinson C, Smelser RE, Sanchez J (1982) Combined mode fracture via the cracked Brazilian disk test. Int J Fract 18(4):279–291

    Google Scholar 

  • Awaji H, Sato S (1978) Combined mode fracture toughness measurement by the disc test. J Eng Mater Technol 100:175–182

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2007) Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comput Mater Sci 38(4):660–670

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2009) Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion. Int J Solids Struct 46(2):311–321

    Article  Google Scholar 

  • Ayatollahi MR, Sedighiani K (2010) Crack tip plastic zone under Mode I, Mode II and mixed mode (I + II) conditions. Struct Eng Mech 36(5):575–598

    Article  Google Scholar 

  • Barr BIG, Hasso EBD (1986) Fracture toughness testing by means of the SECRBB test specimen. Int J Cem Compos Lightweight Concr 8(1):3–9

    Article  Google Scholar 

  • Bass BR, Williams PT, McAfee WJ, Pugh CE (2001) Development of a Weibull model of cleavage fracture toughness for shallow flaws in reactor pressure vessel material. ICONE 9:8–12

    Google Scholar 

  • Beremin F, Pineau A, Mudry F, Devaux J-C, D’Escatha Y, Ledermann P (1983) A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall Mater Trans A 14(11):2277–2287

    Article  Google Scholar 

  • Bluhm JI (1975) Slice synthesis of a three dimensional “work of fracture” specimen. Eng Fract Mech 7(3):593–604

    Article  Google Scholar 

  • Bush AJ (1976) Experimentally determined stress-intensity factors for single-edge-crack round bars loaded in bending. Exp Mech 16(7):249–257

    Article  Google Scholar 

  • Chang SH, Lee CI, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66(1):79–97

    Article  Google Scholar 

  • Chao YJ, Liu S, Broviak BJ (2001) Brittle fracture: variation of fracture toughness with constraint and crack curving under mode I conditions. Exp Mech 41(3):232–241

    Article  Google Scholar 

  • da Silva ARC, Proença SP, Billardon R, Hild F (2004) Probabilistic approach to predict cracking in lightly reinforced microconcrete panels. J Eng Mech 130(8):931–941

    Article  Google Scholar 

  • Davenport JCW, Smith DJ (1993) A study of superimposed fracture modes I, II and III on PMMA. Fatigue Fract Eng Mater Struct 16(10):1125–1133

    Article  Google Scholar 

  • Díaz G, Kittl P (2013) Probabilistic analysis of the fracture toughness of brittle and ductile materials determined by simplified methods using the Weibull distribution function. 11th International conference on fracture (ICF11), Italy 2005

  • Du ZZ, Hancock JW (1991) The effect of non-singular stresses on crack-tip constraint. J Mech Phys Solids 39(4):555–567

    Article  Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–527

    Article  Google Scholar 

  • Fowell RJ, Hudson JA, Xu C, Zhao X (1995) Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. International J Rock Mech Min Sci Geomech Abstr 7(32):322A

    Google Scholar 

  • Giannakopoulos AE, Olsson M (1992) Influence of the nonsingular stress terms on small-scale supercritical transformation toughness. J Am Ceram Soc 75(10):2761–2764

    Article  Google Scholar 

  • Guo H, Aziz NI, Schmidt LC (1993) Rock fracture-toughness determination by the Brazilian test. Eng Geol 33(3):177–188

    Article  Google Scholar 

  • Guo S, Liu R, Jiang X, Zhang H, Zhang D, Wang J, Pan F (2017) Statistical analysis on the mechanical properties of magnesium alloys. Materials 10(11):1271

    Article  Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Kataoka M, Yoshioka S, Cho S-H, Soucek K, Vavro L, Obara Y (2015) Estimation of fracture toughness of sandstone by three testing methods. In: ISRM VietRock international workshop, international society for rock mechanics

  • Kavanagh JL, Pavier MJ (2014) Rock interface strength influences fluid-filled fracture propagation pathways in the crust. J Struct Geol 63:68–75

    Article  Google Scholar 

  • Khan K, Al-Shayea NA (2000) Effect of specimen geometry and testing method on mixed mode I-II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33(3):179–206

    Article  Google Scholar 

  • Kong XM, Schlüter N, Dahl W (1995) Effect of triaxial stress on mixed-mode fracture. Eng Fract Mech 52(2):379–388

    Article  Google Scholar 

  • Kumar B, Chitsiriphanit S, Sun CT (2011) Significance of K-dominance zone size and nonsingular stress field in brittle fracture. Eng Fract Mech 78(9):2042–2051

    Article  Google Scholar 

  • Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2013) ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Springer, Berlin, pp 107–114

    Google Scholar 

  • Liu S, Chao YJ (2003) Variation of fracture toughness with constraint. Int J Fract 124(3):113–117

    Article  Google Scholar 

  • Liu Y, Dai F, Xu N, Zhao T, Feng P (2018) Experimental and numerical investigation on the tensile fatigue properties of rocks using the cyclic flattened Brazilian disc method. Soil Dyn Earthq Eng 105:68–82

    Article  Google Scholar 

  • Matsuki K, Hasibuan SS, Takahashi H (1991) Specimen size requirements for determining the inherent fracture toughness of rocks according to the ISRM suggested methods. Int j rock mech min sci geomech abstr 28(5):365–374

    Article  Google Scholar 

  • Melin S (2002) The influence of the T-stress on the directional stability of cracks. Int J Fract 114(3):259–265

    Article  Google Scholar 

  • Mirsayar MM, Joneidi VA, Petrescu RVV, Petrescu FIT, Berto F (2017) Extended MTSN criterion for fracture analysis of soda lime glass. Eng Fract Mech 178:50–59

    Article  Google Scholar 

  • Mirsayar MM, Razmi A, Aliha MRM, Berto F (2018a) EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials. Eng Fract Mech 190:186–197

    Article  Google Scholar 

  • Mirsayar MM, Razmi A, Berto F (2018b) Tangential strain-based criteria for mixed-mode I/II fracture toughness of cement concrete. Fatigue Fract Eng Mater Struct 41(1):129–137

    Article  Google Scholar 

  • Ouchterlony F (1981). Extension of the compliance and stress intensity formulas for the single edge crack round bar in bending. Fracture Mechanics for Ceramics, Rocks, and Concrete, ASTM International. https://doi.org/10.1520/STP28309S

  • Ouchterlony F (1990) Fracture toughness testing of rock with core based specimens. Eng Fract Mech 35(1):351–366

    Article  Google Scholar 

  • Quinn JB, Quinn GD (2010) A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater J 26(2):135–147

    Article  Google Scholar 

  • Sakin R, Ay I (2008) Statistical analysis of bending fatigue life data using Weibull distribution in glass–fiber reinforced polyester composites. Mater Des 29(6):1170–1181

    Article  Google Scholar 

  • Schmidt RA (1976) Fracture-toughness testing of limestone. Exp Mech 16(5):161–167

    Article  Google Scholar 

  • Schmidt RA (1980) A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. In: The 21st US symposium on rock mechanics (USRMS), American Rock Mechanics Association

  • Sedighiani K, Mosayebnejad J, Ehsasi H, Sahraei HR (2011) The effect of T-stress on the brittle fracture under mixed mode loading. Proc Eng 10:774–779

    Article  Google Scholar 

  • Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10(3):305–321

    Article  Google Scholar 

  • Singh RN, Pathan AG (1988) Fracture toughness of some British rocks by diametral loading of discs. Min Sci Technol 6(2):179–190

    Article  Google Scholar 

  • Smith DJ, Ayatollahi MR, Pavier MJ (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fract Eng Mater Struct 24(2):137–150

    Article  Google Scholar 

  • Smith DJ, Ayatollahi MR, Pavier MJ (2006) On the consequences of T-stress in elastic brittle fracture. In: Proceedings of the Royal Society of London a: mathematical, physical and engineering sciences, vol 462(2072). The Royal Society, pp 2415–2437

  • Stefanou I, Sulem J (2016) Existence of a threshold for brittle grains crushing strength: two-versus three-parameter Weibull distribution fitting. Granul Matter 18(2):14

    Article  Google Scholar 

  • Sun CT, Qian H (2009) Brittle fracture beyond the stress intensity factor. J Mech Mater Struct 4(4):743–753

    Article  Google Scholar 

  • Thiercelin M, Roegiers JC (1986) Fracture toughness determination with the modified ring test. In: Proceedings of the international symposium on engineering in complex rock formations, Beijing, China

  • Thomas AL, Pollard DD (1993) The geometry of echelon fractures in rock: implications from laboratory and numerical experiments. J Struct Geol 15(3–5):323–334

    Article  Google Scholar 

  • Ueno K, Funatsu T, Shimada H, Sasaoka T, Matsui K (2013) Effect of specimen size on mode I fracture toughness by SCB test. In: The 11th international conference on mining, materials and petroleum engineering, Chiang Mai, Thailand

  • Wallin K (1984) The scatter in KIC-results. Eng Fract Mech 19(6):1085–1093

    Article  Google Scholar 

  • Wang QZ, Gou XP, Fan H (2012) The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption. Eng Fract Mech 82:1–8

    Article  Google Scholar 

  • Wei MD, Dai F, Xu NW, Liu JF, Xu Y (2016) Experimental and numerical study on the cracked chevron notched semi-circular bend method for characterizing the mode I fracture toughness of rocks. Rock Mech Rock Eng 49(5):1595–1609

    Article  Google Scholar 

  • Wei MD, Dai F, Xu NW, Liu Y, Zhao T (2018) A novel chevron notched short rod bend method for measuring the mode I fracture toughness of rocks. Eng Fract Mech 190:1–15

    Article  Google Scholar 

  • Wei MD, Dai F, Liu Y, Xu NW, Zhao T (2017a) An experimental and theoretical comparison of CCNBD and CCNSCB specimens for determining mode I fracture toughness of rocks. Fatigue Fract Eng Mater Struct. https://doi.org/10.1111/ffe.12747

    Google Scholar 

  • Wei MD, Dai F, Xu NW, Zhao T, Liu Y (2017b) An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks. Int J Rock Mech Min Sci 99:28–38

    Google Scholar 

  • Wei MD, Dai F, Xu NW, Liu Y, Zhao T (2017c) Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion. Eng Fract Mech 186:21–38

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18(3):293–297

    Google Scholar 

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114

    Google Scholar 

  • Wu HC (1974) Dual failure criterion for plain concrete. J Eng Mech 100(ASCE 10996)

  • Wu SX (1984) Compliance and stress-intensity factor of chevron-notched three-point bend specimen. Chevron-notched specimens: testing and stress analysis, ASTM International

  • Xeidakis GS, Samaras IS, Zacharopoulos DA, Papakaliatakis GE (1996) Crack growth in a mixed-mode loading on marble beams under three point bending. Int J Fract 79(2):197–208

    Article  Google Scholar 

  • Yukio U, Kazuo I, Tetsuya Y, Mitsuru A (1983) Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads. Eng Fract Mech 18(6):1131–1158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. M. Aliha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliha, M.R.M., Mahdavi, E. & Ayatollahi, M.R. Statistical Analysis of Rock Fracture Toughness Data Obtained from Different Chevron Notched and Straight Cracked Mode I Specimens. Rock Mech Rock Eng 51, 2095–2114 (2018). https://doi.org/10.1007/s00603-018-1454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1454-9

Keywords

Navigation