Skip to main content
Log in

Effect of Loading Rate on the Felicity Effect of Three Rock Types

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Cai M, Kaiser PK, Tasaka Y, Maejima T, Morioka H, Minami M (2004) Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci 41(5):833–847

    Article  Google Scholar 

  • Chen J, Yin L, Ren S, Lin L, Fang JY (2015) The thermal damage properties of mudstone, gypsum and rock salt from Yingcheng, Hubei, China. Minerals 5(1):104–116

    Article  Google Scholar 

  • Chong KP, Boresi AP (1990) Strain rate dependent mechanical properties of New Albany reference shale. Int J Rock Mech Min Sci 27(3):199–205

    Article  Google Scholar 

  • Filimonov Y, Lavrov A, Shkuratnik V (2002) Acoustic emission in rock salt: effect of loading rate. Strain 38:157–159

    Article  Google Scholar 

  • Grosse CU, Ohtsu M (2008) Acoustic emission testing. Springer, Heidelberg

    Book  Google Scholar 

  • Hamstad MA (1986) Discussion of the basic understanding of the Felicity effect in fibre composites. J Acoust Emiss 5(2):95–102

    Google Scholar 

  • Jin Y, Qi ZL, Chen M, Zhang GQ, Xu GQ (2009) Time-sensitivity of the Kaiser effect of acoustic emission in limestone and its application to measurements of in situ stress. Pet Sci 6:176–180

    Article  Google Scholar 

  • Kaiser J (1953) Erkenntnisse und Folgerungen aus der Messung von Gerauschen bei Zugbeanspruchung von metallischen Werkstoffen. Archiv Eisenhuttenwes 24(1/2):43–45

    Google Scholar 

  • Kanagawa T, Hayashi M, Nakasa H (1976) Estimation of special geostress components in rock samples using the Kaiser effect of acoustic emission. Technical report, CRIEPI E375004

  • Lajtai EZ, Duncan EJS, Carter BJ (1991) The effect of strain rate on rock strength. Rock Mech Rock Eng 24(2):99–109

    Article  Google Scholar 

  • Lavrov A (2001) Kaiser effect observation in brittle rock cyclically loaded with different loading rates. Mech Mater 33(11):669–677

    Article  Google Scholar 

  • Lavrov A (2003) The Kaiser effect in rocks: principles and stress estimation techniques. Int J Rock Mech Min Sci 40(2):151–171

    Article  Google Scholar 

  • Lehtonen A, Cosgrove JW, Hudson JA, Johansson E (2012) An examination of in situ rock stress estimation using the Kaiser effect. Eng Geol 124:24–37

    Article  Google Scholar 

  • Lei M, Hashiba K, Okubo S, Fukui K (2008) Loading rate dependency of complete stress-strain curve of various rock types. In: Proceedings of the 14th world conference on earthquake engineering, Beijing, China, pp 1–8

  • Li C, Nordlund E (1993) Experimental verification of the Kaiser effect in rocks. Rock Mech Rock Eng 26(4):333–351

    Article  Google Scholar 

  • Li HB, Zhao J, Li TJ (1999) Triaxial compression tests on a granite at different strain rates and confining pressures. Int J Rock Mech Min Sci 36:1057–1063

    Article  Google Scholar 

  • Liang WG, Zhao YS, Xua SG, Dusseaultb MB (2011) Effect of strain rate on the mechanical properties of salt rock. Int J Rock Mech Min Sci 48(1):161–167

    Article  Google Scholar 

  • Lockner D (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci 30(7):883–899

    Article  Google Scholar 

  • Nordlund E, Li C (1990) Acoustic emission and the Kaiser effect in rock materials. In: Hustrulid WA, Johnson GA (eds) Proceedings of 31st US rock mechanics symposium. Balkema, Rotterdam, pp 1043–1050

    Google Scholar 

  • Park P, Park N, Hong C, Jeon S (2001) The influence of delay time and confining pressure on in situ stress measurement using AE and DRA. In: Elsworth D, Tinucci JP, Heasley KA (eds) Proceedings of the 8th US symposium on rock mechanics. Swets & Zeitlinger, Lisse, pp 1281–1284

    Google Scholar 

  • Seto M, Utagawa M, Katsuyama K, Nag DK, Vutukuri VS (1997) In situ stress determination by acoustic emission technique. Int J Rock Mech Min Sci 34(3):281–296

    Google Scholar 

  • Tensi HM (2004) The Kaiser effect and its scientific background. In: Proceedings 26th European conference on acoustic emission testing, Berlin

  • Tuncay E, Obara Y (2012) Comparison of stresses obtained from acoustic emission and compact conical-ended borehole overcoring techniques and an evaluation of the Kaiser effect level. Bull Eng Geol Environ 71:367–377

    Article  Google Scholar 

  • Tuncay E, Ulusay R (2008) Relation between Kaiser effect levels and pre-stresses applied in the laboratory. Int J Rock Mech Min Sci 45(4):524–537

    Article  Google Scholar 

  • Villaescusa E, Seto M, Baird G (2002) Stress measurements from oriented core. Int J Rock Mech Min Sci 39(5):603–615

    Article  Google Scholar 

  • Wang HJ, Dyskin AV, Hsieh A, Dight P (2012) The mechanism of the deformation memory effect and the deformation rate analysis in layered rock in the low stress region. Comput Geotech 44:83–92

    Article  Google Scholar 

  • Wasantha PLP, Ranjith PG, Zhao J, Shao SS, Permata G (2015) Strain rate effect on the mechanical behaviour of sandstones with different grain sizes. Rock Mech Rock Eng 48(5):1883–1895

    Article  Google Scholar 

  • Yamamuro JA, Lade PV (1993) Effects of strain rate on instability of granular soils. Geotech Test J 16(3):304–313

    Article  Google Scholar 

  • Yamshchikov VS, Shkuratnik VL, Lavrov AV (1994) Memory effects in rocks (review). J Min Sci 30(5):463–473

    Article  Google Scholar 

  • Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47(1):94–103

    Article  Google Scholar 

  • Yu RG, Tian Y, Wang XX (2015) Relation between stresses obtained from Kaiser effect under uniaxial compression and hydraulic fracturing. Rock Mech Rock Eng 48(1):397–401

    Article  Google Scholar 

  • Zhang Y, Shao JF, Xu WY, Zhao HB, Wang W (2014) Experimental and numerical investigations on strength and deformation behavior of cataclastic sandstone. Rock Mech Rock Eng 48(3):1083–1096

    Article  Google Scholar 

  • Zhang ZP, Zhang R, Xie HP, Liu JF, Were P (2015) Differences in the acoustic emission characteristics of rock salt compared with granite and marble during the damage evolution process. Environ Earth Sci 73(11):6987–6999

    Article  Google Scholar 

  • Zhao XG, Cai M, Wang J, Li PF, Ma LK (2015) Objective determination of crack initiation stress of brittle rocks under compression using AE measurement. Rock Mech Rock Eng 48(3):2473–2484

    Article  Google Scholar 

  • Zhou H, Yang YK, Zhang CQ, Hu DW (2015) Experimental investigations on loading-rate dependency of compressive and tensile mechanical behavior of hard rocks. Eur J Environ Civil Eng 10(s1):70–82

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided by China Natural Science Foundation (No. 51409261), Applied Basic Research Programs of Qingdao (No. 14-2-4-67-jch), Fundamental Research Funds for the Central Universities (No. 16CX05002A), and Natural Science Foundation of Shandong Province (No. ZR2014EEQ 014) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, Y., Yu, R. et al. Effect of Loading Rate on the Felicity Effect of Three Rock Types. Rock Mech Rock Eng 50, 1673–1681 (2017). https://doi.org/10.1007/s00603-017-1178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1178-2

Keywords

Navigation