Skip to main content
Log in

Numerical Investigation of Bedding Plane Parameters of Transversely Isotropic Shale

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Determination of the physical properties of shale is receiving more attention as the numbers of shale gas exploration projects are initiated, and as hydraulic fracturing becomes an integral exploitation method. In particular, anisotropy caused by the bedding structure of shale needs specific attention. In this paper, an anisotropic mineral brittleness-based model (AMBBM) is proposed that makes use of the discrete element method (DEM) to study shale properties, such as anisotropy of non-penetrating bedding planes and separating brittle and non-brittle minerals. Micro-parameters of the AMBBM are calibrated using uniaxial compressive strength tests and by studying the parameter gradient of smooth joints (SJ), such that the strength of SJ mainly affects the failure load in Brazilian tests (FLBT). It is found that the ratio of cohesion to tensile strength of SJ mainly affects the number of cracks formed, which further leads to different failure modes. Normal stiffness and shear stiffness of SJ exerts different effects on FLBT and stiffness in the model. However, the percentage of cracks of various minerals is less affected. The degree of anisotropy is affected by the angle range of parallel bond replaced by bedding plane. Based on the results, a new validation method for AMBBM is proposed, given that the numerical results show good agreement with experimental results, such as FLBT, splitting modulus, and failure mode. The model can thus be used to study seepage properties of shale gas exploitation and hydraulic fracturing by DEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

P, σ t :

Vertical ultimate loading and failure load in Brazilian test (FLBT)

D, t :

Diameter and thickness of specimen

θ :

Anisotropic angle

E :

Elasticity modulus for transverse isotropy in a plane

E′:

Elasticity modulus for plane perpendicular to isotropy

G′:

Shear modulus for plane perpendicular to isotropy

ν :

Poisson’s ratio for transverse isotropy in a plane

ν′:

Poisson’s ratio for plane perpendicular to isotropy

AR:

Anisotropy ratio

σ i :

FLBT under θ = i (i = 0°–90°)

C n , n :

Categories of contact type and mineral components

σ n , τ :

Normal and shear stress of PB

E n , E shear :

Normal and shear stiffness of PB

u n , u shear :

Normal and shear displacement of PB

σ max, τ max :

Uniaxial compressive strength (UCS) and shear strength of PB

c, ϕ :

Cohesive strength and friction angle of PB

σ T r , c r , ϕ r :

Residual tensile strength, cohesive strength, and friction angle of PB

Δu s :

Incremental shear displacement of PB

A, R :

The area and radius of the SJ particle

\(\bar{\lambda }\) :

Radius multiplier (usually be chosen as 1.0)

\({\mathbf{F}}\), F n :

Force vectors and normal force of SJ

\({\hat{\mathbf{n}}}_{j}\) :

Normal unit force of SJ

\({\mathbf{F}}_{{\mathbf{s}}}\), \({\mathbf{U}}\) :

Shear force vectors and displacement vectors of SJ

U n , \({\mathbf{U}}_{{\mathbf{s}}}\) :

Normal relative displacement and shear relative displacement vectors of SJ

\(F_{s}^{*}\) :

Greatest possible magnitude of shear force

μ j , φ s :

Coefficient of friction and friction angle of SJ

\({\mathbf{F}}_{{\mathbf{s}}}^{{\prime }}\) :

An updated value of shear force

\(sj\_{k}_{n}\), \(sj\_{k}_{s}\) :

Normal and shear stiffness of SJ

Δ :

An increment in updated value of SJ

φ j :

Angle of dilation

\(\bar{\sigma }_{s}\), τ s , \(\bar{c}_{s}\) :

Tensile, shear, and cohesion strength of SJ

f i :

Mineral composition coefficient

\(\bar{\sigma }_{\text{ave}}\), \(\bar{c}_{\text{ave}}\) :

Average tensile strength and cohesion of MBBM

References

  • Belikov BP (1967) Plastic constants of rock-forming minerals and their effect on the elasticity of rocks. In: Zalesskii BV (ed) Physical and mechanical properties of rocks. Academy of Sciences of the USSR, Israel Program for Scientific Translations, Jerusalem, pp 124–140

  • Bewick RP, Kaiser PK, Bawden WF (2014a) Dem simulation of direct shear: 2. Grain boundary and mineral grain strength component influence on shear rupture. Rock Mech Rock Eng 47(5SI):1673–1692

    Article  Google Scholar 

  • Bewick RP, Kaiser PK, Bawden WF, Bahrani N (2014b) Dem simulation of direct shear: 1. Rupture under constant normal stress boundary conditions. Rock Mech Rock Eng 47(5SI):1647–1671

    Article  Google Scholar 

  • Brandt AR (2008) Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the shell in situ conversion process. Environ Sci Technol 42(19):7489–7495

    Article  Google Scholar 

  • Broz ME, Cook RF, Whitney DL (2006) Microhardness, toughness, and modulus of Mohs scale minerals. Am Mineral 91(1):135–142

    Article  Google Scholar 

  • Chong Z, Li X, Yao Q, Zhang J, Chen T (2016) Anchorage behaviour of reinforced specimens containing a single fissure under uniaxial loading: a particle mechanics approach. Arab J Geosci 9(12):592

    Article  Google Scholar 

  • Claesson J, Bohloli B (2002) Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution. Int J Rock Mech Min Sci 39(8):991–1004

    Article  Google Scholar 

  • Clarkson CR (2013) Production data analysis of unconventional gas wells: review of theory and best practices. Int J Coal Geol 109:101–146

    Article  Google Scholar 

  • Debecker B, Vervoort A (2009) Experimental observation of fracture patterns in layered slate. Int J Fract 159(1):51–62

    Article  Google Scholar 

  • Diao H (2013) Rock mechanical properties and brittleness evaluation of shale reservoir. Acta Petrol Sin 29(9):3300–3306

    Google Scholar 

  • Eberhardt E (1998) Brittle rock fracture and progressive damage in uniaxial compression book brittle rock fracture and progressive damage in uniaxial compression. University of Saskatchewan Saskatoon

  • Eftekhari M, Baghbanan A, Hashemolhosseini H (2015) Fracture propagation in a cracked semicircular bend specimen under mixed mode loading using extended finite element method. Arab J Geosci 8(11):9635–9646

    Article  Google Scholar 

  • Gao FQ, Stead D (2014) The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int J Rock Mech Min Sci 68:1–14

    Google Scholar 

  • Gao F, Kang H, Wu Y (2016) Experimental and numerical study on the effect of calcite on the mechanical behaviour of coal. Int J Coal Geol 158:119–128

    Article  Google Scholar 

  • Gorokhovsky AV, Gorokhovsky VA, Mescheryakov DV, Mendez-Nonell J, Escalante-Garcia JI, Pech-Canul MI, Vargas-Gutierrez G (2001) Inorganic Wastes in Manufacturing of glass-ceramics: slurry of phosphorous fertilizer production and oil shale ash. Mater Lett 51(3):281–284

    Article  Google Scholar 

  • Hofmann H, Babadagli T, Yoon JS, Zang A, Zimmermann G (2015) A grain based modeling study of mineralogical factors affecting strength, elastic behavior and micro fracture development during compression tests in granites. Eng Fract Mech 147:261–275

    Article  Google Scholar 

  • Hou P, Gao F, Yang Y, Zhang Z, Zhang X (2016a) Effect of layer orientation on the failure of block shale under Brazilian splitting test and energy analysis. Chin J Geotech Eng 38(5):930–937 (in Chinese and abstract in English)

    Google Scholar 

  • Hou P, Gao F, Zhang Z, Lin B, Yang Y, Gao Y (2016b) Research on mechanical property and bedding inclination effect on gas fracturing of Balck Shale. Chin J Rock Mech Eng 35(04):670–681 (in Chinese and abstract in English)

    Google Scholar 

  • Huang H (1999) Discrete element modeling of tool-rock interaction book discrete element modeling of tool-rock interaction. University of Minnesota, Minneapolis

    Google Scholar 

  • Itasca CG (2014) Pfc2D manual, Version 5.0. Book Pfc2D Manual, Version 5.0. Minnesota, Minneapolis

  • Khanlari G, Rafiei B, Abdilor Y (2015) Evaluation of strength anisotropy and failure modes of laminated sandstones. Arab J Geosci 8(5):3089–3102

    Article  Google Scholar 

  • Kim J, Moridis GJ (2015) Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems. Int J Rock Mech Min Sci 76:127–137

    Google Scholar 

  • Koyama T, Jing L (2007) Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks—a particle mechanics approach. Eng Anal Bound Elem 31(5):458–472

    Article  Google Scholar 

  • Lee H, Ong SH, Azeemuddin M, Goodman H (2012) A wellbore stability model for formations with anisotropic rock strengths. J Pet Sci Eng 96–97:109–119

    Article  Google Scholar 

  • Li L, Tham LG, Tsui Y, Lee P (2001) Numerical investigation on the failure process of Hong Kong granite. In: Sijing W, Bingjun F, Zhongkui L (eds), pp 303–305

  • Liang S, Elsworth D, Li X, Yang D (2014) Topographic influence on stability for gas wells penetrating longwall mining areas. Int J Coal Geol 132:23–36

    Article  Google Scholar 

  • Liang S, Elsworth D, Li X, Fu X, Yang D, Yao Q, Wang Y (2015) Dynamic impacts on the survivability of shale gas wells piercing longwall panels. J Nat Gas Sci Eng 26:1130–1147

    Article  Google Scholar 

  • Liu S, Chen S, Yu F, Zhao W (2012) Anisotropic properties study of chlorite schist. Rock Soil Mech 12:3616–3623 (in Chinese and abstract in English)

    Google Scholar 

  • Mahabadi OK, Cottrell BE, Grasselli G (2010) An example of realistic modelling of rock dynamics problems: Fem/Dem simulation of dynamic Brazilian test on barre granite. Rock Mech Rock Eng 43(6SI):707–716

    Article  Google Scholar 

  • Mambou NLL, Ndop J, Ndjaka JB (2015) Redistribution and magnitude of stresses around horse shoe and circular excavations opened in anisotropic rock. Int J Min Sci Technol 25(4):615–621

    Article  Google Scholar 

  • Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, New York

    Google Scholar 

  • Nagel NB, Sanchez-Nagel MA, Zhang F, Garcia X, Lee B (2013) Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations. Rock Mech Rock Eng 46(3SI):581–609

    Article  Google Scholar 

  • Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Reply to Saba and Orzechowski and Schon: methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci USA 108(37):E665–E666

    Article  Google Scholar 

  • Pierce M, Cundall R, Potyondy D, Ivars DM (2007) A synthetic rock mass model for jointed rock. In: Eberhardt E, Stead D, Morrison T (eds) Proceedings and monographs in engineering, water and earth sciences, pp 341–349

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  • Rickman R, Mullen MJ, Petre JE, Grieser WV, Kundert D (2008) A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

  • Schoepfer MPJ, Childs C, Walsh JJ (2007) Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 2. Impact of confining pressure and strength contrast on fault zone geometry and growth. J Geophys Res Solid Earth 112(B10404):1–16

    Google Scholar 

  • Shimamoto T, Logan JM (1981) Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: nonclay gouges. J Geophys Res Solid Earth 86(B4):2902–2914

    Article  Google Scholar 

  • Tan X, Konietzky H, Fruehwirt T, Dinh QD (2015) Brazilian tests on transversely isotropic rocks: laboratory testing and numerical simulations. Rock Mech Rock Eng 48(4SI):1341–1351

    Article  Google Scholar 

  • Tavallali A, Vervoort A (2010) Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int J Rock Mech Min Sci 47(2):313–322

    Article  Google Scholar 

  • Vervoort A, Min K, Konietzky H, Cho J, Debecker B, Quoc-Dan D, Fruehwirt T, Tavallali A (2014) Failure of transversely isotropic rock under Brazilian test conditions. Int J Rock Mech Min Sci 70:343–352

    Google Scholar 

  • Yang B, Jiao Y, Lei S (2006) A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng Comput 23(5–6):607–631

    Article  Google Scholar 

  • Yang F, Liu QQ, Xiong R, Cao DW, Xiao WX, Zhao L, Tu S (2013) Relationship between mineral characteristics and frictional property of pavement stones. In: Zeng JM, Zhu HX, Kong JY (eds) Advanced materials research, pp 2720–2723

  • Yang S, Huang Y, Jing H, Liu X (2014) Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Eng Geol 178:28–48

    Article  Google Scholar 

  • Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44(6):871–889

    Article  Google Scholar 

  • Yoon JS, Zang A, Stephansson O (2012) Simulating fracture and friction of Aue granite under confined asymmetric compressive test using clumped particle model. Int J Rock Mech Min Sci 49:68–83

    Article  Google Scholar 

  • Yu Y, Wang T (2004) Study on relationship between splitting behaviour and elastic modulus of three gorges granite. Chinese Journal of Rock Mechanics and Engineering 23(19):3258–3261 (in Chinese and abstract in English)

    Google Scholar 

  • Yue ZQ, Chen S, Tham LG (2003) Finite element modeling of geomaterials using digital image processing. Comput Geotech 30(5):375–397

    Article  Google Scholar 

  • Zhang X, Wong LNY (2014) Choosing a proper loading rate for bonded-particle model of intact rock. Int J Fract 189(2):163–179

    Article  Google Scholar 

  • Zhang X, Wong LNY (2011) Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech Rock Eng 45(5):711–737

    Google Scholar 

  • Zhang C, Yue H, Zhao Q, Wang L (2016) Numerical modeling of permeability evolution based on degradation approach during progressive failure of brittle rocks. International Journal of Mining Science and Technology 26(4):535–542

    Article  Google Scholar 

  • Zhu WC, Tang CA (2006) Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int J Rock Mech Min Sci 43(2):236–252

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Fundamental Research Funds for the Central Universities (Grant No: 2015XKZD04), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The financial support provided by China Scholarship Council (CSC, Grant No: 201606420013) was also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, Z., Li, X., Hou, P. et al. Numerical Investigation of Bedding Plane Parameters of Transversely Isotropic Shale. Rock Mech Rock Eng 50, 1183–1204 (2017). https://doi.org/10.1007/s00603-016-1159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1159-x

Keywords

Navigation