Skip to main content

Advertisement

Log in

Strength Behavior, Creep Failure and Permeability Change of a Tight Marble Under Triaxial Compression

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The coupled hydro-mechanical behaviors of a tight marble are investigated by a series of laboratory tests with continuous gas injection during the hydrostatic compression, triaxial compression and compressive creep tests. Hydrostatic compression tests are firstly carried out in three steps to identify the viscous effect of hydrostatic stress on deformation and permeability of the marble. Coupled triaxial tests are then conducted at a constant axial strain rate under five different confining pressures (P c) with continuous gas injection. Coupled creep behaviors of the marble are also characterized by a constant deviatoric stress test under P c = 30 MPa with gas flowing at a constant injection pressure. The high-stress unloading failure behavior of the marble is finally investigated by an unloading test with a previous multi-step creep phase to realize a high-stress state as well as to investigate the time-dependent deformation of marble under different deviatoric stresses. Experimental results reveal that gas permeability of the marble shows an evident rate-dependent effect in hydrostatic compression. Mechanical behaviors of the tight marble are closely depended on the applied P c in triaxial tests, and its permeability exhibits a decrease phase at initial deviatoric loading and turns to increase at a critical stress corresponding to the initial yield stress. Marble can withstand more important plastic deformation under high P c than under lower ones. Gas flow seems to be more sensitive than the strains to characterize the creep behaviors of the marble. No time-dependent strains are observed when deviatoric creep stress is lower than 50% of its peak strength under P c = 30 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(\varepsilon_{1}\) :

Axial strain

\(\varepsilon_{3}\) :

Radius strain

\(\dot{\varepsilon }_{1}\) :

Axial strain rate

\(\dot{\varepsilon }_{3}\) :

Radius strain rate

\(\alpha\) :

Biot’s coefficient

\(\tau\) :

Shear stress

\(\sigma\) :

Normal stress

\(\varphi\) :

Material friction angle

\(\upsilon\) :

Dynamic Poisson

\(c\) :

Material cohesion coefficient

\(E\) :

Unloading–reloading moduli

\(v_{\text{P}}\) :

Ultrasonic P-wave velocity

\(v_{\text{S}}\) :

Ultrasonic S-wave velocity

\(q\) :

Differential (deviatoric) stress

\(P_{\text{c}}\), \(\sigma_{3}\) :

Confining pressure, hydrostatic stress

\(P_{i}\) :

Pore pressure

\(k_{\text{g}}\) :

Gas permeability

\(k\) :

Instinct permeability of porous media

\(b\) :

Klinkenberg’s factor

\(Q\) :

Outlet volumetric flow

\(L\),\(A\) :

Sample length and cross-sectional area

\(P_{0}\), \(\Delta P_{i}\) and \(\bar{P}\) :

Outlet pressure, differential pressure and mean pressure

\(Re\) :

Reynolds number

\(D\) :

Hydraulic diffusivity

\(B\) :

Skempton’s coefficient

\(K_{\text{d}}\) :

Drained bulk modulus

References

  • Baud P, Zhu W, Wong T-F (2000) Failure mode and weakening effect of water on sandstone. J Geophys Res Solid Earth 105:16371–16389. doi:10.1029/2000JB900087

    Article  Google Scholar 

  • Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min Sci Geomech Abstr 17:214–251

    Article  Google Scholar 

  • Brace WF, Walsh JB, Frangos WT (1968) Permeability of granite under high pressure. J Geophys Res 73:2225–2236. doi:10.1029/JB073i006p02225

    Article  Google Scholar 

  • Brantut N, Heap MJ, Meredith PG, Baud P (2013) Time-dependent cracking and brittle creep in crustal rocks: a review. J Struct Geol 52:17–43. doi:10.1016/j.jsg.2013.03.007

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford Science Publications, London

    Google Scholar 

  • Chen W, Yang J, Wu G, Tan X, Jia S, Dai Y, Yu H (2008) Experimental study on permeability in low permeability media. Chin J Rock Mech Eng 2:004

    Google Scholar 

  • Covey-Crump SJ, Xiao WF, Mecklenburgh J, Rutter EH, May SE (2016) Exploring the influence of loading geometry on the plastic flow properties of geological materials: results from combined torsion + axial compression tests on calcite rocks. J Struct Geol 88:20–31. doi:10.1016/j.jsg.2016.04.007

    Article  Google Scholar 

  • Davy CA, Skoczylas F, Barnichon JD, Lebon P (2007) Permeability of macro-cracked argillite under confinement: gas and water testing. Phys Chem Earth 32:667–680. doi:10.1016/j.pce.2006.02.055

    Article  Google Scholar 

  • Dresen G, Evans B (1993) Brittle and semibrittle deformation of synthetic marbles composed of two phases. J Geophys Res Solid Earth 98:11921–11933. doi:10.1029/93JB00697

    Article  Google Scholar 

  • Duda M, Renner J (2013) The weakening effect of water on the brittle failure strength of sandstone. Geophys J Int 192:1091–1108. doi:10.1093/gji/ggs090

    Article  Google Scholar 

  • Evans B, Fredrich JT, Wong T-F (2013) The brittle-ductile transition in rocks: recent experimental and theoretical progress. In: The brittle-ductile transition in rocks. American Geophysical Union, pp 1–20. doi:10.1029/GM056p0001

  • Fredrich JT, Evans B, Wong T-F (1989) Micromechanics of the brittle to plastic transition in Carrara marble. J Geophys Res Solid Earth 94:4129–4145. doi:10.1029/JB094iB04p04129

    Article  Google Scholar 

  • Fredrich JT, Evans B, Wong T-F (1990) Effect of grain size on brittle and semibrittle strength: implications for micromechanical modelling of failure in compression. J Geophys Res 95:10907–10920. doi:10.1029/JB095iB07p10907

    Article  Google Scholar 

  • Ge S, Stover SC (2000) Hydrodynamic response to strike- and dip-slip faulting in a half-space. J Geophys Res Solid Earth 105:25513–25524. doi:10.1029/2000JB900233

    Article  Google Scholar 

  • Guo S, Qi S, Zheng B, Li X (2013) The deformation and strength properties of Jinping marble with different confining pressures under cyclic loading—unloading tests. In: Proceedings of the international symposium and 9th Asian regional conference of IAEG, global view of engineering geology and the environment, pp 413–417

  • Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. 1941/1/1

  • Kümpel H-J (1991) Poroelasticity: parameters reviewed. Geophys J Int 105:783–799. doi:10.1111/j.1365-246X.1991.tb00813.x

    Article  Google Scholar 

  • Lautrup B (2005) Physics of continuous matter. Institute of Physics Publishing, London

    Google Scholar 

  • Liu ZB, Shao JF, Xu WY, Xu F (2014) Comprehensive stability evaluation of rock slope using the cloud model-based approach. Rock Mech Rock Eng 47:2239–2252. doi:10.1007/s00603-013-0507-3

    Article  Google Scholar 

  • Liu Z, Shao J, Xie S, Secq J (2015) Gas permeability evolution of clayey rocks in process of compressive creep test. Mater Lett 139:422–425. doi:10.1016/j.matlet.2014.10.139

    Article  Google Scholar 

  • Liu ZB, Shao JF, Hu DW, Xie SY (2016a) Gas permeability evolution with deformation and cracking process in a white marble under compression. Transp Porous Media 111:441–455

    Article  Google Scholar 

  • Liu ZB, Shao JF, Liu TG, Xie SY, Conil N (2016b) Gas permeability evolution mechanism during creep of a low permeable claystone. Appl Clay Sci 129:47–53

    Article  Google Scholar 

  • Nicolas A, Fortin J, Regnet JB, Dimanov A, Guéguen Y (2016) Brittle and semibrittle behaviours of a carbonate rock: influence of water and temperature. Geophys J Int. doi:10.1093/gji/ggw154

    Google Scholar 

  • Olsson WA, Peng SS (1976) Microcrack nucleation in marble. Int J Rock Mech Min Sci Geomech Abstr 13:53–59. doi:10.1016/0148-9062(76)90704-X

    Article  Google Scholar 

  • Paterson MS, Wong T-F (2005) Experimental rock deformation-the brittle field. Springer, Berlin

    Google Scholar 

  • Peng J, Rong G, Cai M, Yao M, Zhou C (2016) Comparison of mechanical properties of undamaged and thermal-damaged coarse marbles under triaxial compression. Int J Rock Mech Min Sci 83:135–139. doi:10.1016/j.ijrmms.2015.12.016

    Google Scholar 

  • Qiu S-L, Feng X-T, Xiao J-Q, Zhang C-Q (2014) An experimental study on the pre-peak unloading damage evolution of marble. Rock Mech Rock Eng 47:401–419

    Article  Google Scholar 

  • Røyne A, Bisschop J, Dysthe DK (2011) Experimental investigation of surface energy and subcritical crack growth in calcite. J Geophys Res Solid Earth. doi:10.1029/2010JB008033

    Google Scholar 

  • Rutter EH (1972) The influence of interstitial water on the rheological behaviour of calcite rocks. Tectonophysics 14:13–33. doi:10.1016/0040-1951(72)90003-0

    Article  Google Scholar 

  • Rutter EH (1974) The influence of temperature, strain rate and interstitial water in the experimental deformation of calcite rocks. Tectonophysics 22:311–334

    Article  Google Scholar 

  • Schmid SM, Paterson MS, Boland JN (1980) High temperature flow and dynamic recrystallization in carrara marble. Tectonophysics 65:245–280

    Article  Google Scholar 

  • Schubnel A, Fortin J, Burlini L, Gueguen Y (2005) Damage and recovery of calcite rocks deformed in the cataclastic regime. Geol Soc Lond Spec Publ 245:203–221

    Article  Google Scholar 

  • Secq J (2010) Collier de mesure de la deformation laterale d’une eprouvette lors d’essais de compression, notamment uniaxiale ou triaxiale. Google Patents

  • Wu S, Shen M, Wang J (2010) Jinping hydropower project: main technical issues on engineering geology and rock mechanics. Bull Eng Geol Environ 69:325–332

    Article  Google Scholar 

  • Wyckoff RD, Botset HG, Muskat M, Reed DW (1933) The measurement of the permeability of porous media for homogeneous fluids. Rev Sci Instrum 4:394–405

    Article  Google Scholar 

  • Yang S-q, Xu W-y, Su C-d (2007) Study on the deformation failure and energy properties of marble specimen under triaxial compression. Eng Mech 1:022

    Google Scholar 

  • Yang S, Dai Y, Han L, Jin Z (2009) Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Eng Fract Mech 76:1833–1845

    Article  Google Scholar 

  • Yang D, Billiotte J, Su K (2010) Characterization of the hydromechanical behavior of argillaceous rocks with effective gas permeability under deviatoric stress. Eng Geol 114:116–122

    Article  Google Scholar 

  • Zhang C-L (2011) Experimental evidence for self-sealing of fractures in claystone. Phys Chem Earth Parts A/B/C 36:1972–1980

    Article  Google Scholar 

  • Zhang C, Chu W, Liu N, Zhu Y, Hou J (2011) Laboratory tests and numerical simulations of brittle marble and squeezing schist at Jinping II hydropower station, China. J Rock Mech Geotech Eng 3:30–38

    Article  Google Scholar 

  • Zhou Z, Gong M, Lei C (2006) Research on stability of slope at left abutment of Jinping first stage hydropower station. Chin J Rock Mech Eng 25:2298–2304

    Google Scholar 

  • Zhou H, Yang Y, Gao H, Zhang C, Hu D (2015) Experimental investigations on the short-and long-term behaviour of Jinping marble in deep tunnels. Eur J Environ Civ Eng 19:s83–s96

    Article  Google Scholar 

  • Zhu Z-D, Zhang Y, Xu W-Y, Xing F-D, Wang S-J (2005) Experimental studies and microcosmic mechanics analysis on marble rupture under high confining pressure and high hydraulic pressure. Chin J Rock Mech Eng 24:44–51

    Article  Google Scholar 

  • Zuo J, Wei X, Pei J, Zhao X (2015) Investigation of meso-failure behaviors of Jinping marble using SEM with bending loading system. J Rock Mech Geotech Eng 7:593–599

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Wei Wang for providing the marble raw materials. The authors are grateful to Shouyi Xie, Jean Secq and Jean-Pierre Parent for technical supports. The authors also thank the Editors and the anonymous reviewers who provided helpful constructive reviews that greatly improved the manuscript. The present study is partially funded by the Natural Science Foundation of China (No. 11272114) and National Basic (973) Research Program (No. 2011CB013504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaobao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Shao, J. Strength Behavior, Creep Failure and Permeability Change of a Tight Marble Under Triaxial Compression. Rock Mech Rock Eng 50, 529–541 (2017). https://doi.org/10.1007/s00603-016-1134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1134-6

Keywords

Navigation