Skip to main content
Log in

Micro-Macro Analysis and Phenomenological Modelling of Salt Viscous Damage and Application to Salt Caverns

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper aims to gain fundamental understanding of the microscopic mechanisms that control the transition between secondary and tertiary creep around salt caverns in typical geological storage conditions. We use a self-consistent inclusion-matrix model to homogenize the viscoplastic deformation of halite polycrystals and predict the number of broken grains in a Representative Elementary Volume of salt. We use this micro-macro modeling framework to simulate creep tests under various axial stresses, which gives us the critical viscoplastic strain at which grain breakage (i.e., tertiary creep) is expected to occur. The comparison of simulation results for short-term and long-term creep indicates that the initiation of tertiary creep depends on the stress and the viscoplastic strain. We use the critical viscoplastic deformation as a yield criterion to control the transition between secondary and tertiary creep in a phenomenological viscoplastic model, which we implement into the Finite Element Method program POROFIS. We model a 850-m-deep salt cavern of irregular shape, in axis-symmetric conditions. Simulations of cavern depressurization indicate that a strain-dependent damage evolution law is more suitable than a stress-dependent damage evolution law, because it avoids high damage concentrations and allows capturing the formation of a damaged zone around the cavity. The modeling framework explained in this paper is expected to provide new insights to link grain breakage to phenomenological damage variables used in Continuum Damage Mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(\varvec{m},\varvec{n}\) :

Unit sliding vector and unit normal vector in global coordinate

\(\varvec{M},\varvec{N}\) :

Unit sliding vector and unit normal vector in local coordinate

\(\varvec{a^l},\varvec{A^l}\) :

\(l\mathrm{th}\) slip system in global and local coordinates

\(\varvec{\dot{\varepsilon }}^{e}, \varvec{\dot{\varepsilon }}^{vp}\) :

Elastic strain rate, viscoplastic strain rate

\(\gamma _0,\gamma\) :

Reference strain rate, viscoplastic strain of a grain

\(\varvec{P}\) :

Projection tensor

\(\Psi , \theta , \Phi\) :

Angles representing the grain orientation

\(\tau _0, \tau\) :

Reference shear stress, local shear stress of a grain

\(\varvec{\sigma }, \varvec{\varepsilon }\) :

Microscopic stress and strain tensors of a grain

\(\varvec{\overline{\sigma }}, \varvec{\overline{\varepsilon }}\) :

Macroscopic stress and strain tensors of a matrix

\(h^l\) :

Local shear stress-dependent sign coefficient

p :

Probability of the occurrence of a specific grain orientation

\(A, B, n, n_1, n_2\) :

Material constants

\(\varvec{L^*}\) :

Hill’s tensor

\(\kappa , \widetilde{\kappa }\) :

Bulk modulus, effective bulk modulus

\(\mu , \widetilde{\mu }\) :

Shear modulus, effective shear modulus

\(\nu , \widetilde{\nu }\) :

Poisson’s ratio, effective Poisson’s ratio

\(N, N_b, N_g\) :

Number of total grains, number of broken grains, number of good grains

\(D_m, D_M\) :

Damage variable in the homogenization model and the phenomenological model

\(\sigma _T\) :

Mono-crystal tensile strength

R :

Universal gas constant

Q :

Activation energy for the slip mechanism

T :

Absolute temperature

\(\varvec{s},J_2\) :

Deviatoric stress tensor, second deviatoric stress invariant

\(\sigma _e\) :

Equivalent von Mises stress

\(C, \xi , \varphi\) :

Damage accumulation parameters during the tertiary creep

\(\varkappa\) :

Ductility parameter

\(\varvec{C_0},\varvec{C_D}\) :

Stiffness of the intact material, stiffness of the damaged material

References

  • Argon A, Nigam A, Padawer G (1972) Plastic deformation and strain hardening in pure nacl at low temperatures. Phil Mag 25(5):1095–1118

    Article  Google Scholar 

  • Ashby M, Hallam S (1986) The failure of brittle solids containing small cracks under compressive stress states. Acta Metall 34(3):497–510

    Article  Google Scholar 

  • Bobet A, Einstein H (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888

    Article  Google Scholar 

  • Brace WF, Paulding BW, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71(16):3939–3953

    Article  Google Scholar 

  • Carter NL, Hansen FD (1983) Creep of rock salt. Tectonophysics 92(4):275–333

    Article  Google Scholar 

  • Carter NL, Heard HC (1970) Temperature and rate dependent deformation of halite. Am J Sci 269(3):193–249

    Article  Google Scholar 

  • Chan K, Brodsky N, Fossum A, Bodner S, Munson D (1994) Damage-induced nonassociated inelastic flow in rock salt. Int J Plast 10(6):623–642

    Article  Google Scholar 

  • Chan KS, Bodner SR, Fossum AF, Munson DE (1992) A constitutive model for inelastic flow and damage evolution in solids under triaxial compression. Mech Mater 14(1):1–14

    Article  Google Scholar 

  • Chen Z, Wang ML, Lu T (1997) Study of tertiary creep of rock salt. J Eng Mech 123(1):77–82

    Article  Google Scholar 

  • Davidge R, Pratt P (1964) Plastic deformation and work-hardening in NaCl. phys StatusSolidi 6(3):759–776

    Article  Google Scholar 

  • Djakeun HD (2014) Stabilite mecanique d’une cavite saline soumise a des variations rapides de pression. Ph.D. thesis, Ecole Polytechnique

  • Fuenkajorn K, Phueakphum D (2010) Effects of cyclic loading on mechanical properties of maha sarakham salt. Eng Geol 112(1):43–52

    Article  Google Scholar 

  • Groves G, Kelly A (1963) Independent slip systems in crystals. Phil Mag 8(89):877–887

    Article  Google Scholar 

  • Handin J, Russell JE, Carter NL (1986) Experimental Deformation of Rocksalt. In: Hobbs BE, Heard HC (eds) Mineral and Rock Deformation: Laboratory Studies: The Paterson Volume, American Geophysical Union, Washington, D. C. doi:10.1029/GM036p0117

  • Haupt M (1991) A constitutive law for rock salt based on creep and relaxation tests. Rock Mech Rock Eng 24(4):179–206

    Article  Google Scholar 

  • Hayhurst DR, Dimmer PR, Morrison CJ (1984) Development of continuum damage mechanics in the creep rupture of notched bars. Philos Trans Royal Soc Lond Ser A Math Phys Sci 311(1516):103–129

    Article  Google Scholar 

  • Heard HC (1972) Steady-state flow in polycrystalline halite at pressure of 2 kilobars, vol 16. American Geophysical Union, pp 191–209

  • Hill R (1965) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13(2):89–101

    Article  Google Scholar 

  • Hutchinson J (1983) Constitutive behavior and crack tip fields for materials undergoing creep-constrained grain boundary cavitation. Acta Metall 31(7):1079–1088

    Article  Google Scholar 

  • Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sustain Energy Rev 12(5):1221–1250

    Article  Google Scholar 

  • Jefferson AD (1998) Plastic-damage model for interfaces in cementitious materials. J Eng Mech 124(7):775–782

    Article  Google Scholar 

  • Kranz RL, Scholz CH (1977) Critical dilatant volume of rocks at the onset of tertiary creep. J Geophys Res 82(30):4893–4898

    Article  Google Scholar 

  • Leckie FA, Hayhurst DR (1974) Creep rupture of structures. Royal Soc Math Phys Eng Sci 340(1622):323–347

    Article  Google Scholar 

  • Mazars J (1984) Application of damage mechanics to non linear behavior and failure of concrete in structures (in French). Ph.d. thesis, University Paris, Paris, France

  • Munson D, Dawson P (1984) Salt constitutive modeling using mechanism maps. In: First International Conference on the Mechanical Behavior of Salt. Trans. Tech. Publications, Clausthal, pp 717–737

  • Nebozhyn MV, Gilormini P, Ponte Castañeda P (2001) Variational self-consistent estimates for cubic viscoplastic polycrystals: the effects of grain anisotropy and shape. J Mech Phys Solids 49(2):313–340

    Article  Google Scholar 

  • Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous solids. Appl Math Mech. Elsevier, Amsterdam

    Google Scholar 

  • Pouya A (1991) Comportement rheologique du sel gemme application a l’etude des excavations souterraines. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Paris

  • Pouya A (2000) Micro-macro approach for the rock salt behaviour. Eur J Mech A Solids 19:1015–1028

    Article  Google Scholar 

  • Pouya A (2015) A finite element method for modeling coupled flow and deformation in porous fractured media. Int J Numer Anal Methods Geomech. doi:10.1002/nag.2384

    Google Scholar 

  • Pouya A, Zhu C, Arson C (2015) Micro-macro approach of salt viscous fatigue under cyclic loading. Mech Mater (under review)

  • Senseny P, Hansen F, Russell J, Carter N, Handin J (1992) Mechanical behaviour of rock salt: phenomenology and micromechanisms. Int J Rock Mech Min Sci Mech Abstr 29(4):363–378

    Article  Google Scholar 

  • Skrotzki W, Haasen P (1984) The role of cross slip in the steady state creep of salt. In: second conference on the mechanical behavior of salt, pp 24–28

  • Urai JL, Spiers CJ, Zwart HJ, Lister GS (1986) Weakening of rock salt by water during long-term creep. Nature 324:554–557

    Article  Google Scholar 

  • Wanten PH, Spiers CJ, Peach CJ (1996) Deformation of nacl single crystals at 0.27 tm. Series Rock Soil Mech 20:117–128

    Google Scholar 

  • Warren J (2006) Evaporites: sediments, resources and hydrocarbons. Springer, New York

    Book  Google Scholar 

  • Weng G (1982) A unified self-consistent theory for the plastic-creep deformation of metals. J Appl Mech 49:728–734

    Article  Google Scholar 

  • Yang C, Daemen J, Yin J (1999) Experimental investigation of creep behavior of salt rock. Int J Rock Mech Min Sci 36(2):233–242

    Article  Google Scholar 

  • Zhu C, Arson C, Pouya A (2015) Theoretical and numerical matrix-inclusion models of damage accommodation in salt subject to viscous fatigue. In: Mechanical Behavior of Salt VIII. Rapid City

Download references

Acknowledgments

Financial support for this research was provided by the School of Civil and Environmental Engineering at the Georgia Institute of Technology, and by the National Science Foundation (Grant No. CMMI-1362004/1361996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Pouya, A. & Arson, C. Micro-Macro Analysis and Phenomenological Modelling of Salt Viscous Damage and Application to Salt Caverns. Rock Mech Rock Eng 48, 2567–2580 (2015). https://doi.org/10.1007/s00603-015-0832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0832-9

Keywords

Navigation