Skip to main content
Log in

Dynamic Indirect Tensile Strength of Sandstone Under Different Loading Rates

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Blanton TL (1981) Effect of strain rates from 10−2 to 10 s−1 in triaxial compression tests on three rocks. Int J Rock Mech Min Sci Geomech Abstr 18(1):47–62

    Article  Google Scholar 

  • Cai M, Kaiser K, Suorineni F, Su K (2007) A study on the dynamic behavior of the Meuse/Haute Marne argillite. Phys Chem Earth 32:907–916

    Google Scholar 

  • Chong KP, Boresi AP (1990) Strain rate dependent mechanical properties of new albany reference shale. Int J Rock Mech Min Sci Geomech Abstr 27:199–205

    Article  Google Scholar 

  • Chong KP, Hoyt PM, Smith JW, Paulsen BY (1980) Effects of strain rate on oil shale fracturing. Int J Rock Mech Min Sci 17:35–43

    Article  Google Scholar 

  • Dai F, Huang S, Xia K, Tan Z (2010a) Some fundamental Issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43:657–666

    Article  Google Scholar 

  • Dai F, Xia K, Tang L (2010b) Rate dependence of the flexural tensile strength of Laurentian granite. Int J Rock Mech Min Sci 47(3):469–475

    Article  Google Scholar 

  • Grady DE, Hollenbach RE, Schuler KW, Callender JF (1977) Strain rate dependence in dolomite inferred from impact and static compression studies. J Geophy Res 82(8):1325–1333

    Article  Google Scholar 

  • Kazerani T, Zhao GF, Zhao J (2010) Dynamic fracturing simulation of brittle material using the distinct lattice spring method with a full rate-dependent cohesive law. Rock Mech Rock Eng 43:717–726

    Article  Google Scholar 

  • Lankford J (1981) The role of tensile microfracture in the strain rate dependence of compressive strength of fine-grained limestone—analogy with strong ceramics. Int J Rock Mech Min Sci Geomech Abstr 18:173–175

    Article  Google Scholar 

  • Li D, Wong LNY (2013) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng 46:269–287

    Article  Google Scholar 

  • Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39

    Article  Google Scholar 

  • Ma GW, Wang XJ, Li QM (2010) Modeling strain rate effect of heterogeneous materials using SPH method. Rock Mech Rock Eng 43:763–776

    Article  Google Scholar 

  • Mahabadi OK, Cottrell BE, Grasselli G (2010) An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on barre granite. Rock Mech Rock Eng 43:707–716

    Article  Google Scholar 

  • Masuda K, Mizutani H, Yamada I (1987) Experimental study of strain-rate dependence and pressure dependence of failure properties of granite. J Phys Earth 35:37–66

    Article  Google Scholar 

  • National Standards Compilation Group of People’s Republic of China (1999) Standard for tests method of engineering rock masses (GB/T50266-99). China Plan Press, Beijing

    Google Scholar 

  • Wang QZ, Li W, Song XL (2006) A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure Appl Geophys 163:1091–1100

    Article  Google Scholar 

  • Yu Y, Yin J, Zhong Z (2006) Shape effects in the Brazilian tensile strength test and a 3D FEM correction. Int J Rock Mech Min Sci 43:623–627

    Article  Google Scholar 

  • Zhang S, Liang Y, Li D (2009) Effect of disc thickness on rock tensile strength formula. J Min Safety Eng 26:450–454

    Google Scholar 

  • Zhao J (2000) Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. Int J Rock Mech Min Sci 37(7):1115–1121

    Article  Google Scholar 

  • Zhao GF (2010) Development of micro-macro continuum-discontinuum coupled numerical method. PhD thesis, EPFL, Switzerland

  • Zhao J (2011) An overview of some recent progress in rock dynamics research. In: Zhou YX, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, Boca Raton, pp 5–33

    Chapter  Google Scholar 

  • Zhao J, Li HB (2000) Experimental determination of dynamic tensile properties of a granite. Int J Rock Mech Min Sci 37:861–866

    Article  Google Scholar 

  • Zhao J, Li HB, Wu MB, Li TJ (1999) Dynamic uniaxial compression tests on a granite. Int J Rock Mech Min Sci 36:273–277

    Article  Google Scholar 

  • Zhao GF, Fang J, Zhao J (2011) A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Anal Meth Geomech 35:859–885

    Article  Google Scholar 

  • Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112

    Article  Google Scholar 

  • Zhu JB, Zhao GF, Zhao XB, Zhao J (2011) Validation study of the distinct lattice spring model (DLSM) on P-wave propagation across multiple parallel joints. Comput Geotech 38:298–304

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Australian Research Council (Grant No. DE130100457), the National Basic Research Program of China (Grant No. 2010CB732004), the Natural Science Foundation of China (Grant No. 41102170), and the State Key Laboratory of Coal Resources and Safe Mining, CUMT (Grant No. SKLCRSM11KFA02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao-Feng Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, FQ., Zhao, GF. Dynamic Indirect Tensile Strength of Sandstone Under Different Loading Rates. Rock Mech Rock Eng 47, 2271–2278 (2014). https://doi.org/10.1007/s00603-013-0503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0503-7

Keywords

Navigation