Skip to main content
Log in

Spectrum of Hadrons with Strangeness

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We describe a calculation of the spectrum of strange and nonstrange hadrons that simultaneously correlates the dressed-quark-core masses of meson and baryon ground- and excited-states within a single framework. The foundation for this analysis is a symmetry-preserving Dyson–Schwinger equation treatment of a vector×vector contact interaction. Our results exemplify and highlight the deep impact of dynamical chiral symmetry breaking on the hadron spectrum: an accurate description of the meson spectrum entails a similarly successful prediction of the spectrum of baryons, including those with strangeness. The analysis also provides numerous insights into baryon structure. For example, that baryon structure is largely flavour-blind, the first radial excitation of ground-state baryons is constituted almost entirely from axial-vector diquark correlations, and DCSB is the foundation for the ordering of low-lying baryon levels; viz., (1/2)+, (1/2)+, (1/2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, C.D.: Strong QCD and Dyson-Schwinger Equations. arXiv:1203.5341 [nucl-th]. Submitted (2012)

  2. Aznauryan, I., et al.: Theory Support for the Excited Baryon Program at the JLab 12 GeV Upgrade. arXiv:0907.1901 [nucl-th] (2009)

  3. Aznauryan I., Burkert V., Lee T.-S., Mokeev V.: Results from the N* program at JLab. J. Phys. Conf. Ser. 299, 012008 (2011)

    Article  ADS  Google Scholar 

  4. Carman D.S.: GlueX: the search for gluonic excitations at Jefferson Laboratory. AIP Conf. Proc. 814, 173–182 (2006)

    Article  ADS  Google Scholar 

  5. Crede V., Meyer C.: The experimental status of glueballs. Prog. Part. Nucl. Phys. 63, 74–116 (2009)

    Article  ADS  Google Scholar 

  6. Roberts H.L.L., Chang L., Cloët I.C., Roberts C.D.: Masses of ground and excited-state hadrons. Few-Body Syst. 51, 1–25 (2011)

    Article  ADS  Google Scholar 

  7. Roberts H.L.L., Bashir A., Gutiérrez-Guerrero L.X., Roberts C.D., Wilson D.J.: pi- and rho-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C 83, 065206 (2011)

    Article  ADS  Google Scholar 

  8. Wilson D.J., Cloët I.C., Chang L., Roberts C.D.: Nucleon and Roper electromagnetic elastic and transition form factors. Phys. Rev. C 85, 025205 (2012)

    Article  ADS  Google Scholar 

  9. Chang L., Roberts C.D., Tandy P.C.: Selected highlights from the study of mesons. Chin. J. Phys. 49, 955–1004 (2011)

    Google Scholar 

  10. Bashir, A., Chang, L., Cloet, I.C., El-Bennich, B., Liu, Y.-x., et al.: Collective perspective on advances in Dyson-Schwinger Equation QCD. arXiv:1201.3366 [nucl-th] Commun. Theor. Phys. (2012)

  11. Gutiérrez-Guerrero L.X., Bashir A., Cloët I.C., Roberts C.D.: Pion form factor from a contact interaction. Phys. Rev. C 81, 065202 (2010)

    Article  ADS  Google Scholar 

  12. Roberts H.L.L., Roberts C.D., Bashir A., Gutiérrez-Guerrero L.X., Tandy P.C.: Abelian anomaly and neutral pion production. Phys. Rev. C 82, 065202 (2010)

    Article  ADS  Google Scholar 

  13. Jain P., Munczek H.J.: q anti-q bound states in the Bethe–Salpeter formalism. Phys. Rev. D 48, 5403–5411 (1993)

    Article  ADS  Google Scholar 

  14. Maris P., Roberts C.D.: π and K meson Bethe–Salpeter amplitudes. Phys. Rev. C 56, 3369–3383 (1997)

    Article  ADS  Google Scholar 

  15. Maris P., Roberts C.D.: Dyson-Schwinger equations: a tool for hadron physics. Int. J. Mod. Phys. E 12, 297–365 (2003)

    Article  ADS  Google Scholar 

  16. Munczek H.J.: Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger-Dyson and Bethe-Salpeter equations. Phys. Rev. D 52, 4736–4740 (1995)

    Article  ADS  Google Scholar 

  17. Bender A., Roberts C.D., von Smekal L.: Goldstone theorem and diquark confinement beyond Rainbow-Ladder approximation. Phys. Lett. B 380, 7–12 (1996)

    Article  ADS  Google Scholar 

  18. Maris P., Raya A., Roberts C.D., Schmidt S.M.: Facets of confinement and dynamical chiral symmetry breaking. Eur. Phys. J. A 18, 231–235 (2003)

    Article  ADS  Google Scholar 

  19. Eichmann G., Alkofer R., Cloët I.C., Krassnigg A., Roberts C.D.: Perspective on rainbow-ladder truncation. Phys. Rev. C 77, 042202(R) (2008)

    Article  ADS  Google Scholar 

  20. Maris P., Tandy P.C.: Bethe–Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)

    Article  ADS  Google Scholar 

  21. Bhagwat M.S., Maris P.: Vector meson form factors and their quark-mass dependence. Phys. Rev. C 77, 025203 (2008)

    Article  ADS  Google Scholar 

  22. Qin S.-x., Chang L., Liu Y.-x., Roberts C.D., Wilson D.J.: Interaction model for the gap equation. Phys. Rev. C 84, 042202(R) (2011)

    Article  ADS  Google Scholar 

  23. Qin S.-x., Chang L., Liu Y.-x., Roberts C.D., Wilson D.J.: Commentary on rainbow-ladder truncation for excited states and exotics. Phys. Rev. C 85, 035202 (2012)

    Article  ADS  Google Scholar 

  24. Maris P., Roberts C.D.: Pseudovector components of the pion, pi0 –> gamma gamma, and F(pi)(q**2). Phys. Rev. C 58, 3659–3665 (1998)

    Article  ADS  Google Scholar 

  25. Maris P., Tandy P.C.: The pi, K+, and K0 electromagnetic form factors. Phys. Rev. C 62, 055204 (2000)

    Article  ADS  Google Scholar 

  26. Maris P., Tandy P.C.: Electromagnetic transition form factors of light mesons. Phys. Rev. C 65, 045211 (2002)

    Article  ADS  Google Scholar 

  27. Bhagwat M.S., Chang L., Liu Y.-X., Roberts C.D., Tandy P.C.: Flavour symmetry breaking and meson masses. Phys. Rev. C 76, 045203 (2007)

    Article  ADS  Google Scholar 

  28. Eichmann G., Cloët I.C., Alkofer R., Krassnigg A., Roberts C.D.: Toward unifying the description of meson and baryon properties. Phys. Rev. C 79, 012202 (2009)

    Article  ADS  Google Scholar 

  29. Eichmann G.: Nucleon electromagnetic form factors from the covariant Faddeev equation. Phys. Rev. D 84, 014014 (2011)

    Article  ADS  Google Scholar 

  30. Eichmann, G.: Baryon form factors from Dyson-Schwinger equations. PoS QCD-TNT-II, 017 (2011)

  31. Eichmann G., Fischer C.: Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation. Eur. Phys. J. A 48, 9 (2012)

    Article  ADS  Google Scholar 

  32. Bhagwat M.S., Krassnigg A., Maris P., Roberts C.D.: Mind the gap. Eur. Phys. J. A 31, 630–637 (2007)

    Article  ADS  Google Scholar 

  33. Höll A., Krassnigg A., Roberts C.D.: Pseudoscalar meson radial excitations. Phys. Rev. C 70, 042203 (2004)

    Article  ADS  Google Scholar 

  34. Höll A., Krassnigg A., Maris P., Roberts C.D., Wright S.V.: Electromagnetic properties of ground and excited state pseudoscalar mesons. Phys. Rev. C 71, 065204 (2005)

    Article  ADS  Google Scholar 

  35. Chang L., Roberts C.D.: Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  36. Chang L., Liu Y.-X., Roberts C.D.: Dressed-quark anomalous magnetic moments. Phys. Rev. Lett. 106, 072001 (2011)

    Article  ADS  Google Scholar 

  37. Chang, L., Roberts, C.D.: Tracing masses of ground-state light-quark mesons. arXiv:1104.4821 [nucl-th]. http://prc.aps.org/abstract/PRC/v85/i5/e052201

  38. Bashir, A., Bermudez, R., Chang, L., Roberts, C.D.: Dynamical chiral symmetry breaking and the fermion–gauge-boson vertex. Phys. Rev. C. http://prc.aps.org/abstract/PRC/v85/i4/e045205

  39. Bhagwat M., Pichowsky M., Tandy P.C.: Confinement phenomenology in the Bethe–Salpeter equation. Phys. Rev. D 67, 054019 (2003)

    Article  ADS  Google Scholar 

  40. Gasparyan A.M., Haidenbauer J., Hanhart C., Speth J.: Pion nucleon scattering in a meson exchange model. Phys. Rev. C 68, 045207 (2003)

    Article  ADS  Google Scholar 

  41. Matsuyama A., Sato T., Lee T.S.H.: Dynamical coupled-channel model of meson production reactions in the nucleon resonance region. Phys. Rept. 439, 193–253 (2007)

    Article  ADS  Google Scholar 

  42. Suzuki N. et al.: Disentangling the dynamical origin of P-11 nucleon resonances. Phys. Rev. Lett. 104, 042302 (2010)

    Article  ADS  Google Scholar 

  43. Döring M. et al.: The reaction π+ pK + Σ+ in a unitary coupled-channels model. Nucl. Phys. A 851, 58–98 (2011)

    Article  ADS  Google Scholar 

  44. Cahill R.T., Roberts C.D., Praschifka J.: Baryon structure and QCD. Austral. J. Phys. 42, 129–145 (1989)

    ADS  Google Scholar 

  45. Aguilar A., Binosi D., Papavassiliou J., Rodriguez-Quintero J.: Non-perturbative comparison of QCD effective charges. Phys. Rev. D 80, 085018 (2009)

    Article  ADS  Google Scholar 

  46. Oliveira O., Bicudo P.: Running gluon mass from Landau gauge lattice QCD propagator. J. Phys. G 38, 045003 (2011)

    Article  ADS  Google Scholar 

  47. Aguilar A.C., Binosi D., Papavassiliou J.: QCD effective charges from lattice data. JHEP 07, 002 (2010)

    Article  ADS  Google Scholar 

  48. Boucaud P. et al.: The low-momentum ghost dressing function and the gluon mass. Phys. Rev. D 82, 054007 (2010)

    Article  ADS  Google Scholar 

  49. Pennington M.R., Wilson D.J.: Are the dressed gluon and ghost propagators in the Landau Gauge presently determined in the confinement regime of QCD?. Phys. Rev. D 84, 119901 (2011)

    Article  ADS  Google Scholar 

  50. Wilson, D.J., Pennington, M.R.: Vertex sensitivity in the Schwinger-Dyson equations of QCD. PoS QCD-TNT-II, 052 (2011)

  51. Nambu Y., Jona-Lasinio G.: Dynamical model of elementary particles based on an analogy with superconductivity. 1. Phys. Rev. 122, 345–358 (1961)

    Article  ADS  Google Scholar 

  52. Brodsky S.J., Roberts C.D., Shrock R., Tandy P.C.: New perspectives on the quark condensate. Phys. Rev. C 82, 022201(R) (2010)

    Article  ADS  Google Scholar 

  53. Chang L., Roberts C.D., Tandy P.C.: Expanding the concept of in-hadron condensates. Phys. Rev. C 85, 012201(R) (2012)

    ADS  Google Scholar 

  54. Brodsky, S.J., Roberts, C.D., Shrock, R., Tandy, P.C.: Confinement contains condensates. http://prc.aps.org/abstract/PRC/v85/i6/e065202 (2012)

  55. Ebert D., Feldmann T., Reinhardt H.: Extended NJL model for light and heavy mesons without q anti-q thresholds. Phys. Lett. B 388, 154–160 (1996)

    Article  ADS  Google Scholar 

  56. Roberts C.D., Williams A.G., Krein G.: On the implications of confinement. Int. J. Mod. Phys. A 7, 5607–5624 (1992)

    Article  ADS  Google Scholar 

  57. Leutwyler H.: Light quark masses. PoS CD09, 005 (2009)

    Google Scholar 

  58. Roberts, C.D.: Looking into the matter of light-quark hadrons. Few-Body Syst. http://www.springerlink.com/content/a8811015u2383210 (2012)

  59. Bender A., Detmold W., Roberts C.D., Thomas A.W.: Bethe–Salpeter equation and a nonperturbative quark gluon vertex. Phys. Rev. C 65, 065203 (2002)

    Article  ADS  Google Scholar 

  60. Bhagwat M.S., Höll A., Krassnigg A., Roberts C.D., Tandy P.C.: Aspects and consequences of a dressed-quark-gluon vertex. Phys. Rev. C 70, 035205 (2004)

    Article  ADS  Google Scholar 

  61. Cahill R.T., Roberts C.D., Praschifka J.: Calculation of diquark masses in QCD. Phys. Rev. D 36, 2804 (1987)

    Article  ADS  Google Scholar 

  62. Nakamura K. et al.: Review of particle physics. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  63. Pelaez J., Rios G.: Nature of the f0(600) from its N(c) dependence at two loops in unitarized Chiral Perturbation Theory. Phys. Rev. Lett. 97, 242002 (2006)

    Article  ADS  Google Scholar 

  64. Ruiz de Elvira J., Pelaez J.R., Pennington M.R., Wilson D.J.: Chiral Perturbation Theory, the 1/N c expansion and Regge behaviour determine the structure of the lightest scalar meson. Phys. Rev. D 84, 096006 (2011)

    Article  ADS  Google Scholar 

  65. Maris P.: Hadron physics and the Dyson–Schwinger equations of QCD. AIP Conf. Proc. 892, 65–71 (2007)

    Article  ADS  Google Scholar 

  66. Cloët, I.C., Krassnigg, A., Roberts, C.D.: Dynamics, symmetries and Hadron properties. In: Machner, H., Krewald, S. (eds.) Proceedings of 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2007), Jülich, Germany, 10–14 Sep 2007, Paper 125. arXiv:0710.5746 [nucl-th]

  67. Watson P., Cassing W., Tandy P.C.: Bethe–Salpeter meson masses beyond ladder approximation. Few-Body Syst. 35, 129–153 (2004)

    ADS  Google Scholar 

  68. Fischer C.S., Williams R.: Probing the gluon self-interaction in light mesons. Phys. Rev. Lett. 103, 122001 (2009)

    Article  ADS  Google Scholar 

  69. Chang L., Roberts C.D.: Hadron physics: the essence of matter. AIP Conf. Proc. 1361, 91–114 (2011)

    Article  ADS  Google Scholar 

  70. Cloët I.C., Roberts C.D.: Form factors and Dyson-Schwinger equations. PoS LC2008, 047 (2008)

    Google Scholar 

  71. Blaschke D., Kalinovsky Y., Roepke G., Schmidt S., Volkov M.: 1/N(c) expansion of the quark condensate at finite temperature. Phys. Rev. C 53, 2394–2400 (1996)

    Article  ADS  Google Scholar 

  72. Fischer C.S., Nickel D., Wambach J.: Hadronic unquenching effects in the quark propagator. Phys. Rev. D 76, 094009 (2007)

    Article  ADS  Google Scholar 

  73. Chang L., Cloët I.C., El-Bennich B., Klahn T., Roberts C.D.: Exploring the light-quark interaction. Chin. Phys. C 33, 1189–1196 (2009)

    Article  ADS  Google Scholar 

  74. Roberts C.D., Schmidt S.M.: Dyson-Schwinger equations: density, temperature and continuum strong QCD. Prog. Part. Nucl. Phys. 45, S1–S103 (2000)

    Article  ADS  Google Scholar 

  75. Roberts C.D., Bhagwat M.S., Höll A., Wright S.V.: Aspects of hadron physics. Eur. Phys. J. ST140, 53–116 (2007)

    Google Scholar 

  76. Roberts C.D., Cahill R.T., Praschifka J.: QCD and a calculation of the ω–ρ mass splitting. Int. J. Mod. Phys. A 4, 719 (1989)

    Article  ADS  Google Scholar 

  77. Hollenberg L.C., Roberts C.D., McKellar B.H.: Two loop calculation of the ω-ρ mass splitting. Phys. Rev. C 46, 2057–2065 (1992)

    Article  ADS  Google Scholar 

  78. Alkofer R., Bender A., Roberts C.D.: Pion loop contribution to the electromagnetic pion charge radius. Int. J. Mod. Phys. A 10, 3319–3342 (1995)

    Article  ADS  Google Scholar 

  79. Mitchell K., Tandy P.: Pion loop contribution to rho-omega mixing and mass splitting. Phys. Rev. C 55, 1477–1491 (1997)

    Article  ADS  Google Scholar 

  80. Ishii N.: Meson exchange contributions to the nucleon mass in the Faddeev approach to the NJL model. Phys. Lett. B 431, 1–7 (1998)

    ADS  Google Scholar 

  81. Pichowsky M.A., Walawalkar S., Capstick S.: Meson-loop contributions to the rho omega mass splitting and rho charge radius. Phys. Rev. D 60, 054030 (1999)

    Article  ADS  Google Scholar 

  82. Hecht M. et al.: Nucleon mass and pion loops. Phys. Rev. C 65, 055204 (2002)

    Article  ADS  Google Scholar 

  83. Cloët I. et al.: Current quark mass dependence of nucleon magnetic moments and radii. Few-Body Syst. 42, 91–113 (2008)

    Article  ADS  Google Scholar 

  84. Cloët I.C., Eichmann G., El-Bennich B., Klähn T., Roberts C.D.: Survey of nucleon electromagnetic form factors. Few-Body Syst. 46, 1–36 (2009)

    Article  ADS  Google Scholar 

  85. Roberts, C.D.: Confinement, diquarks and Goldstone’s theorem, pp. 224–230. In: Brambilla, N., Prosperi, G.M. (eds.) Como 1996, Quark Confinement and the Hadron Spectrum II. World Scientific, Singapore [nucl-th/9609039] (1996)

  86. Bloch J.C., Roberts C.D., Schmidt S.: Diquark condensation and the quark quark interaction. Phys. Rev. C 60, 065208 (1999)

    Article  ADS  Google Scholar 

  87. Pauli W.: On the conservation of the Lepton charge. Nuovo Cim. 6, 204–215 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  88. Gürsey F.: Relation of charge independence and baryon conservation to Pauli’s transformation. Nuovo Cim. 7, 411–415 (1958)

    Article  MATH  Google Scholar 

  89. Oettel M., Hellstern G., Alkofer R., Reinhardt H.: Octet and decuplet baryons in a covariant and confining diquark-quark model. Phys. Rev. C 58, 2459–2477 (1998)

    Article  ADS  Google Scholar 

  90. Buck A., Alkofer R., Reinhardt H.: Baryons as bound states of diquarks and quarks in the Nambu-Jona-Lasinio model. Phys. Lett. B 286, 29–35 (1992)

    Article  ADS  Google Scholar 

  91. Bentz W., Cloët I.C., Ito T., Thomas A.W., Yazaki K.: Polarized structure functions of nucleons and nuclei. Prog. Part. Nucl. Phys. 61, 238–244 (2008)

    Article  ADS  Google Scholar 

  92. Young R.D., Leinweber D.B., Thomas A.W., Wright S.V.: Chiral analysis of quenched baryon masses. Phys. Rev. D 66, 094507 (2002)

    Article  ADS  Google Scholar 

  93. Young R., Thomas A.: Octet baryon masses and sigma terms from an SU(3) chiral extrapolation. Phys. Rev. D 81, 014503 (2010)

    Article  ADS  Google Scholar 

  94. Roberts, C.D., Cloët, I.C., Chang, L., Roberts, H.L.L.: Dressed-quarks and the Roper resonance. arXiv:1108.1327 [nucl-th]. http://proceedings.aip.org/resource/2/apcpcs/1432/1/309_1?isAuthorized=no

  95. Capstick S., Roberts W.: Quark models of baryon masses and decays. Prog. Part. Nucl. Phys. 45, S241–S331 (2000)

    Article  ADS  Google Scholar 

  96. Edwards R.G., Dudek J.J., Richards D.G., Wallace S.J.: Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011)

    Article  ADS  Google Scholar 

  97. de Teramond, G.F., Brodsky, S.J.: Hadronic form factor models and spectroscopy within the gauge/gravity correspondence. arXiv:1203.4025 [hep-ph] (2012)

  98. Volkov M., Weiss C.: A Chiral Lagrangian for excited pions. Phys. Rev. D 56, 221–229 (1997)

    Article  ADS  Google Scholar 

  99. Volkov M., Yudichev V.: Radial excitations of scalar and eta, eta-prime mesons in a chiral quark model. Phys. Atom. Nucl. 63, 1835–1846 (2000)

    Article  ADS  Google Scholar 

  100. Roberts H., Chang L., Roberts C.: Impact of dynamical chiral symmetry breaking on meson structure and interactions. Int. J. Mod. Phys. A 26, 371–377 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig D. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Chang, L., Roberts, C.D. et al. Spectrum of Hadrons with Strangeness. Few-Body Syst 53, 293–326 (2012). https://doi.org/10.1007/s00601-012-0466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-012-0466-3

Keywords

Navigation