Skip to main content
Log in

Exact Spin and Pseudospin Symmetry Solutions of the Dirac Equation for Mie-Type Potential Including a Coulomb-like Tensor Potential

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We solve the Dirac equation for Mie-type potential including a Coulomb-like tensor potential under spin and pseudospin symmetry limits with arbitrary spin–orbit coupling quantum number κ. The Nikiforov–Uvarov method is used to obtain analytical solutions of the Dirac equation. Since it is only the wave functions which are obtained in a closed exact form; as for the eigenvalues, only the eigenvalue equations have been given and they have been solved numerically. It is also shown that the degeneracy between spin doublets and pseudospin doublets is removed by tensor interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mesa A.D.S., Quesne C., Smirnov Y.F.: Generalized Morse potential: symmetry and satellite potentials. J. Phys. A: Math. Gen. 31, 321 (1998)

    Article  MATH  ADS  Google Scholar 

  2. Codriansky S., Cordero P., Salamo S.: On the generalized Morse potential. J. Phys. A: Math. Gen. 32, 6287 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Jia C.S., Zeng L.X., Sun L.T.: PT symmetry and shape invariance for a potential well with a barrier. Phys. Lett. A 294, 185 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Rong Z., Kjaergaard H.G., Sage M.L.: Comparison of the Morse and Deng-Fan potentials for X-H bonds in small molecules. Mol. Phys. 101, 2285 (2003)

    Article  ADS  Google Scholar 

  5. Dong S.H.: The realization of dynamic group for the pseudoharmonic oscillator. Appl. Math. Lett. 16, 199 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jia C.S., Li Y., Sun Y., Liu J.Y., Sun L.T.: Bound states of the five-parameter exponential-type potential model. Phys. Lett. A 311, 115 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Haouat S., Chetouani L.: Approximate solutions of Klein–Gordon and Dirac equations in the presence of the Hulthén potential. Phys. Scr. 77, 025005 (2008)

    Article  ADS  Google Scholar 

  8. Wei G.F., Liu X.Y.: The relativistic bound states of the hyperbolical potential with the centrifugal term. Phys. Scr. 78, 065009 (2008)

    Article  ADS  Google Scholar 

  9. Zhang L.H., Li X.P., Jia C.S.: Analytical approximation to the solution of the Dirac equation with the Eckart potential including the spin–orbit coupling term. Phys. Lett. A 372, 2201 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. Xu Y., He S., Jia C.S.: Approximate analytical solutions of the Dirac equation with the Pöschl–Teller potential including the spin–orbit coupling term. J. Phys. A: Math. Theor. 41, 255302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. Dong S.H., Gu X.Y.: Arbitrary l state solutions of the Schrödinger equation with the Deng-Fan molecular potential. J. Phys.: Conf. Ser. 96, 012109 (2008)

    Article  ADS  Google Scholar 

  12. Soylu A., Bayrak O., Boztosun I.: κ state solutions of the Dirac equation for the Eckart potential with pseudospin and spin symmetry. J. Phys. A: Math. Theor. 41, 065308 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. Chen T., Diao Y.F., Jia C.S.: Bound state solutions of the Klein–Gordon equation with the generalized Pöschl–Teller potential. Phys. Scr. 79, 065014 (2009)

    Article  ADS  Google Scholar 

  14. Chen T., Liu J.Y., Jia C.S.: Approximate analytical solutions of the Dirac–Manning–Rosen problem with the spin symmetry and pseudo-spin symmetry. Phys. Scr. 79, 055002 (2009)

    Article  ADS  Google Scholar 

  15. Jia C.S., Chen T., Cui L.G.: Approximate analytical solutions of the Dirac equation with the generalized Pöschl–Teller potential including the pseudo-centrifugal term. Phys. Lett. A 373, 1621 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. Xu Y., He S., Jia C.S.: Reply to ‘comment on’ approximate analytical solutions of the Dirac equation with the Pöschl–Teller potential including spin–orbit coupling. J. Phys. A: Math. Theor. 42, 198002 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  17. Taskin F.: Approximate solutions of the Dirac equation for the Manning-Rosen potential including the Spin-Orbit coupling term. Int. J. Theor. Phys. 48, 1142 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu X.Y., Wei G.F., Long C.Y.: Arbitrary wave relativistic bound state solutions for the Eckart potential. Int. J. Theor. Phys. 48, 463 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bohr A., Hamamoto I., Mottelson B.R.: Pseudospin in rotating nuclear potentials. Phys. Scr. 26, 267 (1982)

    Article  ADS  Google Scholar 

  20. Dudek J., Nazarewicz W., Szymanski Z., Leander G.A.: Abundance and systematics of nuclear superdeformed states; relation to the pseudospin and pseudo-SU(3) symmetries. Phys. Rev. Lett. 59, 1405 (1987)

    Article  ADS  Google Scholar 

  21. Troltenier D., Bahri C., Draayer J.P.: Generalized pseudo-SU(3) model and pairing. Nucl. Phys. A 586, 53 (1995)

    Article  ADS  Google Scholar 

  22. Page P.R., Goldman T., Ginocchio J.N.: Relativistic symmetry suppresses Quark spin-orbit splitting. Phys. Rev. Lett. 86, 204 (2001)

    Article  ADS  Google Scholar 

  23. Ginocchio J.N., Leviatan A., Meng J., Zhou S.G.: Test of pseudospin symmetry in deformed nuclei. Phys. Rev. C 69, 034303 (2004)

    Article  ADS  Google Scholar 

  24. Ginocchio J.N.: Pseudospin as a relativistic symmetry. Phys. Rev. Lett. 78(3), 436 (1997)

    Article  ADS  Google Scholar 

  25. Ginocchio J.N.: Relativistic symmetries in nuclei and hadrons. Phys. Rep. 414(4-5), 165 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  26. Hect K.T., Adler A.: Generalized seniority for favored J ≠  0 pairs in mixed configurations. Nucl. Phys. A 137, 129 (1969)

    Article  ADS  Google Scholar 

  27. Arima A., Harvey M., Shimizu K.: Pseudo LS coupling and pseudo SU3 coupling schemes. Phys. Lett. B 30, 517 (1969)

    Article  ADS  Google Scholar 

  28. Ikhdair S.M., Sever R.: Approximate bound state solutions of Dirac equation with Hulthén potential including Coulomb-like tensor potential. Appl. Math. Com. 216, 911 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Moshinsky M., Szczepanika A.: The Dirac oscillator. J. Phys. A: Math. Gen. 22, L817 (1989)

    Article  ADS  Google Scholar 

  30. Kukulin V.I., Loyla G., Moshinsky M.: A Dirac equation with an oscillator potential and spin-orbit coupling. Phys. Lett. A 158, 19 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  31. Akcay H.: Dirac equation with scalar and vector quadratic potentials and Coulomb-like tensor potential. Phys. Lett. A 373, 616 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  32. Akcay H.: The Dirac oscillator with a Coulomb-like tensor potential. J. Phys. A: Math. Theor. 40, 6427 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Aydoğdu O., Sever R.: Exact Pseudospin symmetric solution of the Dirac equation for pseudoharmonic potential in the presence of tensor potential. Few-Body Syst. 47, 193 (2010)

    Article  ADS  Google Scholar 

  34. Berkdemir C.: Pseudospin symmetry in the relativistic Morse potential including the spin–orbit coupling term. Nucl. Phys. A 770, 32 (2006)

    Article  ADS  Google Scholar 

  35. Chen T.S., Lü H.F., Meng J., Zhang S.Q., Zhou S.G.: Pseudospin symmetry in relativistic framework with harmonic oscillator potential and Woods-Saxon potential. Chin. Phys. Lett. 20, 358 (2003)

    Article  ADS  Google Scholar 

  36. Alhaidari A.D., Bahlouli H., Al-Hasan A.: Dirac and Klein–Gordon equations with equal scalar and vector potentials. Phys. Lett. A. 349, 87 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Guo J.Y., Zhou F., Guo F.L., Zhou J.H.: Exact solution of the continuous states for generalized asymmetrical Hartmann potentials under the condition of pseudospin symmetry. Int. J. Mod. Phys. A 22, 4825 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Guo J.Y., Sheng Z.Q.: Solution of the Dirac equation for the Woods–Saxon potential with spin and pseudospin symmetry. Phys. Lett. A 338, 90 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Qiang W.C., Zhou R.S., Gao Y.: Application of the exact quantization rule to the relativistic solution of the rotational Morse potential with pseudospin symmetry. J. Phys. A: Math. Theor. 40, 1677 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Xu Q., Zhu S.J.: Pseudospin symmetry and spin symmetry in the relativistic Woods–Saxon. Nucl. Phys. A 768, 161 (2006)

    Article  ADS  Google Scholar 

  41. Aydoğdu O., Sever R.: Exact solution of the Dirac equation with the Mie-type potential under the pseudospin and spin symmetry limit. Ann. Phys. 325, 373 (2010)

    Article  MATH  ADS  Google Scholar 

  42. Ikhdair S.M., Sever R.: Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén Potential with any angular momentum. J. Math. Chem. 42, 461 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Erkoc S., Sever R.: Path-integral solution for a Mie-type potential. Phys. Rev. D 30, 2117 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  44. Morse P.M.: Diatomic molecules according to the wave Mechanics. II. Vibrational levels. Phys. Rev. 34, 57 (1929)

    Article  ADS  Google Scholar 

  45. Ikhdair S.M., Sever R.: On solutions of the Schrödinger equation for some molecular potentials: wave function ansatz. Cent. Eur. J. Phys. 6, 697 (2008)

    Article  Google Scholar 

  46. Ikhdair S.M., Sever R.: Polynomial solutions of the Mie-type potential in the D-dimensional Schrödinger equation. J. Mol. Struc. (Theochem) 13, 855 (2008)

    Google Scholar 

  47. Berkdemir C., Berkdemir A., Han J.: Bound state solutions of the Schrödinger equation for modified Kratzer’s molecular potential. Chem. Phys. Lett 417, 326 (2006)

    Article  ADS  Google Scholar 

  48. Bjorken J.D., Drell S.D.: “Relativistic Quantum Mechanics”. McGraw-Hill, NY (1964)

    Google Scholar 

  49. Meng J., Sugawara-Tanabe K., Yamaji S., Arima A.: Pseudospin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line. Phys. Rev. C 59, 154 (1999)

    Article  ADS  Google Scholar 

  50. Meng J. et al.: Pseudospin symmetry in relativistic mean field theory. Phys. Rev. C 58, R628 (1998)

    Article  ADS  Google Scholar 

  51. Satchler G.R.: “Direct Nuclear Reactions”. Oxford University Press, London (1983)

    Google Scholar 

  52. Nikiforov A.F., Uvarov V.B.: “Special Functions of Mathematical Physics”. Birkhausr, Berlin (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hamzavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamzavi, M., Rajabi, A.A. & Hassanabadi, H. Exact Spin and Pseudospin Symmetry Solutions of the Dirac Equation for Mie-Type Potential Including a Coulomb-like Tensor Potential. Few-Body Syst 48, 171–182 (2010). https://doi.org/10.1007/s00601-010-0095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-010-0095-7

Keywords

Navigation