Skip to main content
Log in

The Bethe-Salpeter equation with fermions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The Bethe-Salpeter (BS) equation in the ladder approximation is studied within a fermion theory: two fermion fields (constituents) with mass m interacting via an exchange of a scalar field with mass μ. The BS equation can be written in the form of an integral equation in the configuration Euclidean x-space with the symmetric kernel K for which Tr K 2 = ∞ due to the singular character of the fermion propagator. This kernel is represented in the form K = K 0 + K I . The operator K 0 with Tr K 0 2 = ∞ is of the “fall at the center” potential type and describes a continuous spectrum only. Besides the presence of this operator leads to a restriction on the value of the coupling constant. The kernel K I with Tr K I 2 < ∞ is responsible for bound fermion-fermion states.

Our approach is that the eigenvalue problem of the equation \(\Lambda\Psi = g^2(K_0 + K_I)\Psi \qquad {\rm with}\qquad \Lambda = 1\) can be rewritten in the form \(\Phi={\frac {1}{\sqrt{\Lambda-g^2 K_0}}} g^2 K_I {\frac {1} {\sqrt{\Lambda-g^2K_0}}}\Phi.\) The kernel of the last equation is finite for g 2 < g c 2 and the variational procedure of calculations of eigenvalues and eigenfunctions can be applied.

The quantum pseudoscalar and scalar mesodynamics is considered. The binding energy of the state 1+ (deuteron) as a function of the coupling constant is calculated in the framework of the procedure formulated above. It is shown that this bound state is absent in the pseudoscalar mesodynamics and does exist in the scalar mesodynamics. A comparison with the non-relativistic Schrödinger picture is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Wick GC (1954) Phys Rev 96:1124; Cutkosky RE (1954) Phys Rev 96:1135

  • C Itzykson J-B Zuber (1980) Quantum field theory McGraw-Hill New York

    Google Scholar 

  • W Greiner J Reinhart (1992) Quantum electrodynamics Springer Berlin Heidelberg New York

    Google Scholar 

  • Nakanishi N (1965) Phys Rev 138:B1182; (1969) Pr Theor Phys Suppl 43:1

  • SM Dorkin et al. (2006) Phys Part Nucl 37 867 Occurrence Handle10.1134/S1063779606060037

    Article  Google Scholar 

  • S Weinberg (1999) The quantum theory of fields NumberInSeries1 Cambridge University Press Cambridge

    Google Scholar 

  • GE Brown AD Jackson (1976) The nucleon-nucleon interaction North-Holland New York

    Google Scholar 

  • T Nieuwenhuis JA Tjon (1996) Few Body Syst 21 167 Occurrence Handle10.1007/s006010050046 Occurrence Handle1996FBS....21..167N

    Article  ADS  Google Scholar 

  • GV Efimov (2003) Few Body Syst 33 199 Occurrence Handle10.1007/s00601-003-0015-1 Occurrence Handle2003FBS....33..199E

    Article  ADS  Google Scholar 

  • Mandelstam S (1955) Proc Roy Soc A 233:248; (1956) Proc Roy Soc A 237:486; (1958) Phys Rev 112:1344

  • G Tiktopoulos (1965) J Math Phys 6 573 Occurrence Handle0127.19501 Occurrence Handle10.1063/1.1704308 Occurrence Handle1965JMP.....6..573T Occurrence Handle174315

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • JJ Kubis (1972) Phys Rev D 6 547 Occurrence Handle10.1103/PhysRevD.6.547 Occurrence Handle1972PhRvD...6..547K

    Article  ADS  Google Scholar 

  • K Kusaka AG Williams (1995) Phys Rev D 51 7026 Occurrence Handle10.1103/PhysRevD.51.7026 Occurrence Handle1995PhRvD..51.7026K

    Article  ADS  Google Scholar 

  • F Gross C Savkh J Tjon (2001) Phys Rev D 64 076008 Occurrence Handle10.1103/PhysRevD.64.076008 Occurrence Handle2001PhRvD..64g6008G

    Article  ADS  Google Scholar 

  • CJ Burden MA Pichowsky (2002) Few Body Syst 32 119 Occurrence Handle10.1007/s00601-002-0113-5 Occurrence Handle2002FBS....32..119B

    Article  ADS  Google Scholar 

  • J Praschifka RT Cahill CD Roberts (1989) Int J Mod Phys A 4 4929 Occurrence Handle10.1142/S0217751X89002090 Occurrence Handle1989IJMPA...4.4929P

    Article  ADS  Google Scholar 

  • RT Cahill J Praschifka CJ Burden (1989) Aust J Phys 42 161 Occurrence Handle1989AuJPh..42..161C

    ADS  Google Scholar 

  • RT Cahill (1992) Nucl Phys A 543 63 Occurrence Handle10.1016/0375-9474(92)90411-C Occurrence Handle1992NuPhA.543...63C

    Article  ADS  Google Scholar 

  • H Kleinert (1976) Phys Lett B 62 429 Occurrence Handle10.1016/0370-2693(76)90676-6 Occurrence Handle1976PhLB...62..429K

    Article  ADS  Google Scholar 

  • T Kugo (1978) Phys Lett B 76 625 Occurrence Handle10.1016/0370-2693(78)90870-5 Occurrence Handle1978PhLB...76..625K

    Article  ADS  Google Scholar 

  • GV Efimov (2004) Phys Part Nucl 35 598

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence: G. V. Efimov, Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efimov, G. The Bethe-Salpeter equation with fermions. Few-Body Systems 41, 157–184 (2007). https://doi.org/10.1007/s00601-007-0180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-007-0180-8

Keywords

Navigation