Skip to main content
Log in

Rapid touchdown PCR assay for the molecular diagnosis of spinocerebellar ataxia type 2

  • Original
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

Seven different chromosomal loci, designatedSCA1 toSCA7 (spinocerebellar ataxias), have been identified as responsible for autosomal dominant cerebellar ataxias. Five genes (SCA1, 2, 3, 6, 7) have been cloned to date and show a single type of mutation, an unstable expansion of a CAG repeat coding for a polyglutamine stretch in the corresponding protein. We describe an improved polymerase chain reaction assay, based on a touchdown protocol, for the diagnosis of spinocerebellar ataxia type 2. This method produces an efficient amplification of both normal and pathological alleles and no radioactive labelling is necessary to observe the amplification products. The pathological alleles are identified by a simple non-denaturing polyacrylamide electrophoretic separation followed by ethidium bromide staining. A comparison of this technique with previously reported methods confirmed its utility for the rapid molecular diagnosis of spinocerebellar ataxia type 2. We found that the spinocerebellar ataxia type 2 mutation is responsible for 88% of the examined autosomal dominant cerebellar ataxia type 1 families in our territory (eastern Sicily). With the rapid touchdown polymerase chain reaction method, the trinucleotide expansion was also observed in 2 ataxic patients without family history of the disease, suggesting the necessity for analysis of spinocerebellar ataxia type 2 expansion even in sporadic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the “the Drew family of Walworth”. Brain 1982; 105: 1.

    Article  PubMed  CAS  Google Scholar 

  2. Zoghbi HY. The spinocerebellar degnerations. Curr Neurol 1991; 11: 121.

    Google Scholar 

  3. Orr HT, Chung M, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LPW, Zoghbi HY. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993; 4: 221.

    Article  PubMed  CAS  Google Scholar 

  4. Gispert S, Twells R, Orozco G, et al. Chromosomal assignment of the second locus for autosomal dominant cerebrellar ataxia (SCA2) to chromosome 12q 23–24.1. Nat Genet 1993; 4: 295.

    Article  PubMed  CAS  Google Scholar 

  5. Ranum LPW, Schut LJ, Lundgren JK, Orr HT, Livingston DM. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 1994; 8: 280.

    Article  PubMed  CAS  Google Scholar 

  6. Kawaguchi Y, Okamoto T, Taniwaki M, et al. GAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q 32.1. Nat Genet 1994; 8: 221.

    Article  PubMed  CAS  Google Scholar 

  7. Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, Kaplan C, Ptacek LJ. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q 22.1. Am J Hum Genet 1996; 59: 392.

    PubMed  CAS  Google Scholar 

  8. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha (1A)-voltage-dependent calcium channel. Nat Genet 1997; 15: 62.

    Article  PubMed  CAS  Google Scholar 

  9. David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A. Cloning of theSCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997; 17: 65.

    Article  PubMed  CAS  Google Scholar 

  10. Imbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996; 14: 285.

    Article  PubMed  CAS  Google Scholar 

  11. Sanpei K, Takano H, Igarashi S, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996; 14: 277.

    Article  PubMed  CAS  Google Scholar 

  12. Pulst S, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar type 2. Nat Genet 1996; 14: 269.

    Article  PubMed  CAS  Google Scholar 

  13. Lindblad K, Savontaus ML, Stevanin G, Holmberg M, Digre K, Zander C, Ehrsson H, David G, Benomar A, Nikoskelainen E, Trottier Y, Holmgren G, Ptacek LJ, Anttinen A, Brice A, Schalling M. An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res 1996; 6: 965.

    Article  PubMed  CAS  Google Scholar 

  14. Giunti P, Sweeney MG, Spadaro M, et al. The trinucleotide repeat expansion on chromosome 6 p (SCA1) in autosomal dominant cerebellar ataxia. Brain 1994; 117: 645.

    Article  PubMed  Google Scholar 

  15. Dubourg O, Durr A, Cancel G, et al. Analysis of theSCA1 CAG repeat in large number of families with dominant ataxia: clinical and molecular correlations. Ann Neurol 1995; 37: 176.

    Article  PubMed  CAS  Google Scholar 

  16. De Michele G, Santoro L, Calabrese O, Castaldo I, Giuffrida S, Restivo D, Serlenga L, Scala R, Coppola G, Grimaldi G, Cocozza S, Filla A.SCA2 is the most frequent cause of autosomal dominant cerebellar ataxia in southern Italy. Ital J Neurol Sci [Suppl] 1997; 4: 26.

    Google Scholar 

  17. Lorenzetti D, Bohlega S, Zoghbi HY. The expansion of the CAG repeat in ataxin-2 is a frequent cause of autosomal dominant spinocerebellar ataxia. Neurology 1997; 49: 1009.

    PubMed  CAS  Google Scholar 

  18. Condorelli DF, Nicoletti VG, Barresi V, Caruso A, Conticello S, De Vellis J, Giuffrida Stella AM. Tissue-specific DNA methylation patterns of the rat glial fibrillary acidic protein gene. J Neurosci Res 1994; 39: 694.

    Article  PubMed  CAS  Google Scholar 

  19. Banfi S, Servadio A, Chung MY, Kwiatkowski TJ Jr, McCall AE, Duvick LA, Shen Y, Roth EJ, Orr HT, Zoghbi HY. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 1994; 7: 513.

    Article  PubMed  CAS  Google Scholar 

  20. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  21. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS. “Touch-down” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 1991; 19: 4008.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condorelli, D.F., Trovato-Salinaro, A., Spinella, F. et al. Rapid touchdown PCR assay for the molecular diagnosis of spinocerebellar ataxia type 2. Int J Clin Lab Res 28, 174–178 (1998). https://doi.org/10.1007/s005990050039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005990050039

Key words

Navigation