Skip to main content

Advertisement

Log in

Outcomes of lung transplantation for idiopathic pleuroparenchymal fibroelastosis

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

This study was performed to compare the outcome of lung transplantation (LT) for idiopathic pleuroparenchymal fibroelastosis (IPPFE) with that of LT for idiopathic pulmonary fibrosis (IPF).

Methods

We reviewed, retrospectively, all adult patients who underwent LT for IPPFE or IPF in Japan between 1998 and 2018.

Results

There were 100 patients eligible for this study (31 with IPPFE and 69 with IPF). Patients with IPPFE tended to have a significantly lower body mass index (BMI) than those with IPF (median, 16.7 vs. 22.6 kg/m2, respectively; P < 0.01). However, Kaplan–Meier survival curves showed no significant difference in overall survival between the groups. The BMI did not increase in patients with IPPFE, even 1 year after LT (pretransplant, 16.5 ± 3.2 kg/m2 vs. 1 year post-transplant, 15.6 ± 2.5 kg/m2; P = 0.08). The percent predicted forced vital capacity (%FVC) 1 year after LT was significantly lower in the IPPFE group than in the IPF group (48.4% ± 19.5% vs. 68.6% ± 15.5%, respectively; P < 0.01).

Conclusions

Despite extrapulmonary problems such as a flat chest, low BMI, and associated restrictive impairment persisting in patients with IPPFE, patient survival after LT for IPPFE or IPF was equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

%DLco:

Percent predicted diffusing capacity of carbon monoxide

%FEV1 :

Percent predicted forced expiratory volume in 1 s

%FVC:

Percent predicted forced vital capacity

APDT:

Anteroposterior diameter of the thoracic cage

BMI:

Body mass index

FEV1 :

Forced expiratory volume in 1 s

FVC:

Forced vital capacity

ICU:

Intensive care unit

IIPs:

Idiopathic interstitial pneumonias

IPF:

Idiopathic pulmonary fibrosis

IPPFE:

Idiopathic pleuroparenchymal fibroelastosis

LT:

Lung transplantation

TDT:

Transverse diameter of the thoracic cage

References

  1. Travis WD, Costabel U, Hansell DM, King TE Jr, Lynch DA, Nicholson AG, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188:733–48.

    Article  Google Scholar 

  2. Shioya M, Otsuka M, Yamada G, Umeda Y, Ikeda K, Nishikiori H, et al. Poorer prognosis of idiopathic pleuroparenchymal fibroelastosis compared with idiopathic pulmonary fibrosis in advanced stage. Can Respir J. 2018;2018:1–7. https://doi.org/10.1155/2018/6043053.

    Article  Google Scholar 

  3. Shiiya H, Tian D, Sato M, Karasaki T, Kitano K, Nagayama K, et al. Differences between patients with idiopathic pleuroparenchymal fibroelastosis and those with other types of idiopathic interstitial pneumonia in candidates for lung transplants. Transplant Proc. 2019;51:2014–21.

    Article  Google Scholar 

  4. Nakatani T, Arai T, Kitaichi M, Akira M, Tachibana K, Sugimoto C, et al. Pleuroparenchymal fibroelastosis from a consecutive database: a rare disease entity? Eur Respir J. 2015;45:1183–6.

    Article  Google Scholar 

  5. Date H. Current status and problems of lung transplantation in Japan. J Thorac Dis. 2016;8:S631–6. https://doi.org/10.21037/jtd.2016.06.38.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bonifazi M, Montero MA, Renzoni EA. Idiopathic pleuroparenchymal fibroelastosis. Curr Pulmonol Rep. 2017;6:9–15. https://doi.org/10.1007/s13665-017-0160-5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Watanabe K. Pleuroparenchymal fibroelastosis: its clinical characteristics. Curr Respir Med Rev. 2013;9:229–37. https://doi.org/10.2174/1573398X0904140129125307.

    Article  CAS  PubMed Central  Google Scholar 

  8. Harada T, Yoshida Y, Kitasato Y, Tsuruta N, Wakamatsu K, Hirota T, et al. The thoracic cage becomes flattened in the progression of pleuroparenchymal fibroelastosis. Eur Respir Rev. 2014;23:263–6.

    Article  Google Scholar 

  9. Yanagiya M, Sato M, Kawashima S, Kuwano H, Nagayama K, Nitadori J, et al. Flat chest of pleuroparenchymal fibroelastosis reversed by lung transplantation. Ann Thorac Surg. 2016;102:e347–9. https://doi.org/10.1016/j.athoracsur.2016.02.092.

    Article  PubMed  Google Scholar 

  10. Reddy TL, Tominaga M, Hansell DM, von der Thusen J, Rassl D, Parfrey H, et al. Pleuroparenchymal fibroelastosis: a spectrum of histopathological and imaging phenotypes. Eur Respir J. 2012;40:377–85.

    Article  Google Scholar 

  11. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183:788–824.

    Article  Google Scholar 

  12. Miyoshi R, Chen-Yoshikawa TF, Takahagi A, Oshima Y, Hijiya K, Motoyama H, et al. Pulmonary function and exercise capacity in patients with flat chests after lung transplantation. Ann Thorac Surg. 2017;104:1695–701.

    Article  Google Scholar 

  13. Miyahara S, Chen-Yoshikawa TF, Motoyama H, Nakajima D, Hamaji M, Aoyama A, et al. Impact of flat chest on cadaveric lung transplantation: postoperative pulmonary function and survival. Eur J Cardio-Thorac Surg. 2019;55:316–22.

    Article  Google Scholar 

  14. Date H, Aoyama A, Hijiya K, Motoyama H, Handa T, Kinoshita H, et al. Outcomes of various transplant procedures (single, sparing, inverted) in living-donor lobar lung transplantation. J Thorac Cardiovasc Surg. 2017;153:479–86.

    Article  Google Scholar 

  15. Chambers DC, Cherikh WS, Harhay MO, Hayes D, Hsich E, Khush KK, et al. The international thoracic organ transplant registry of the international society for heart and lung transplantation: thirty-sixth adult lung and heart-lung transplantation report-2019; focus theme: donor and recipient size match. J Heart Lung Transplant. 2019;38:1042–55.

    Article  Google Scholar 

  16. Ganapathi AM, Mulvihill MS, Englum BR, Speicher PJ, Gulack BC, Osho AA, et al. Transplant size mismatch in restrictive lung disease. Transpl Int. 2017;30:378–87.

    Article  Google Scholar 

  17. Li D, Liu Y, Wang B. Single versus bilateral lung transplantation in idiopathic pulmonary fibrosis: a systematic review and meta-analysis. PLoS ONE. 2020;15:e0233732. https://doi.org/10.1371/journal.pone.0233732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyoshi R, Chen-Yoshikawa TF, Hijiya K, Motoyama H, Aoyama A, Menju T, et al. Significance of single lung transplantation in the current situation of severe donor shortage in Japan. Gen Thorac Cardiovasc Surg. 2016;64:93–7.

    Article  Google Scholar 

  19. Shiiya H, Sato M, Shinozaki-Ushiku A, Konoeda C, Kitano K, Nakajima J. Exacerbation of secondary pulmonary hypertension by flat chest after lung transplantation. Ann Thorac Cardiovasc Surg. 2020. https://doi.org/10.5761/atcs.cr.20-00230.

    Article  PubMed  Google Scholar 

  20. Marczin N, Popov AF, Zych B, Romano R, Kiss R, Sabashnikov A, et al. Outcomes of minimally invasive lung transplantation in a single centre: the routine approach for the future or do we still need clamshell incision? Interact Cardiovasc Thorac Surg. 2016;22:537–45.

    Article  Google Scholar 

  21. Shudo Y, Rinewalt D, Lingala B, Kim FY, He H, Boyd JH, et al. Impact of surgical approach in double lung transplantation: median sternotomy vs clamshell thoracotomy. Transplant Proc. 2020;52:321–5.

    Article  Google Scholar 

  22. Upala S, Panichsillapakit T, Wijarnpreecha K, Jaruvongvanich V, Sanguankeo A. Underweight and obesity increase the risk of mortality after lung transplantation: a systematic review and meta-analysis. Transpl Int. 2016;29:285–96.

    Article  Google Scholar 

  23. Chua F, Desai SR, Nicholson AG, Devaraj A, Renzoni E, Rice A, et al. Pleuroparenchymal fibroelastosis a review of clinical, radiological, and pathological characteristics. Ann Am Thorac Soc. 2019;16:1351–9.

    Article  Google Scholar 

  24. Staufer K, Halilbasic E, Hillebrand P, Harm S, Schwarz S, Jaksch P, et al. Impact of nutritional status on pulmonary function after lung transplantation for cystic fibrosis. United Eur Gastroenterol J. 2018;6:1049–55. https://doi.org/10.1177/2050640618778381.

    Article  Google Scholar 

  25. Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15:457–65. https://doi.org/10.1517/14740338.2016.1140743.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Japanese Society of Lung and Heart-Lung Transplantation for helping us to collect the patients’ data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Sato.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 394 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiiya, H., Nakajima, J., Date, H. et al. Outcomes of lung transplantation for idiopathic pleuroparenchymal fibroelastosis. Surg Today 51, 1276–1284 (2021). https://doi.org/10.1007/s00595-021-02232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-021-02232-6

Keywords

Navigation