Skip to main content

Advertisement

Log in

The evaluation of the safety and efficacy of intravenously administered allogeneic multilineage-differentiating stress-enduring cells in a swine hepatectomy model

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Introduction

Multilineage-differentiating stress-enduring (Muse) cells are non-tumorigenic endogenous pluripotent-like cells residing in the bone marrow that exert a tissue reparative effect by replacing damaged/apoptotic cells through spontaneous differentiation into tissue-constituent cells. Post-hepatectomy liver failure (PHLF) is a potentially fatal complication. The main purpose of this study was to evaluate the safety and efficiency of allogeneic Muse cell administration via the portal vein in a swine model of PHLF.

Methods

Swine Muse cells, collected from swine bone marrow-mesenchymal stem cells (MSCs) as SSEA-3(+) cells, were examined for their characteristics. Then, 1 × 107 allogeneic-Muse cells and allogeneic-MSCs and vehicle were injected via the portal vein in a 70% hepatectomy swine model.

Results

Swine Muse cells exhibited characteristics comparable to previously reported human Muse cells. Compared to the MSC and vehicle groups, the Muse group showed specific homing of the administered cells into the liver, resulting in improvements in the control of hyperbilirubinemia (P = 0.04), prothrombin international normalized ratio (P = 0.05), and suppression of focal necrosis (P = 0.04). Integrated Muse cells differentiated spontaneously into hepatocyte marker-positive cells.

Conclusions

Allogeneic Muse cell administration may provide a reparative effect and functional recovery in a 70% hepatectomy swine model and thus may contribute to the treatment of PHLF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AST:

Aspartate aminotransferase

ALB:

Albumin

ALT:

Alanine aminotransferase

ALP:

Alkaline phosphatase

ANOVA:

Analysis of variance

bFGF:

Basic fibroblast growth factor

BM-MSC:

Bone marrow derived mesenchymal stem cell

CDH2:

N-cadherin

CK 18:

Cytokeratin 18

CTNNB1:

Catenin beta 1

DAPI:

4′, 6-Diamidino-2-phenylindole

ELISA:

Enzyme-linked immunosorbent assay

FACS:

Fluorescence-activated cell sorter

FITC:

Fluorescein isothiocyanate

GFP:

Green fluorescent protein

HGF:

Hepatocyte growth factor

HNF:

Hepatocyte nuclear factor

HPF:

High-power field

ISL1:

Insulin gene enhancer binding protein

IVC:

Inferior vena cava

LLL:

Left lateral lobe

LML:

Left medial lobe

MMP:

Matrix metalloproteinase

MSC:

Mesenchymal stem cell

Muse:

Multilineage-differentiating stress-enduring

NES:

Nestin

NR5A2:

Nuclear receptor subfamily 5

OCT3/4:

Octamer-binding transcription factor 4

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

PHLF:

Post-hepatectomy liver failure

PT-INR:

Prothrombin international normalized ratio

Pou5f1:

POU domain class 5 transcription factor-1

RLL:

Right lateral lobe

RML:

Right medial lobe

RT-PCR:

Reverse transcription polymerase chain reaction

SMA:

Alpha-smooth muscle actin

SOX2:

Sex-determining region Y-box 2

SRY:

Sex-determining region Y

SSEA-3:

Stage-specific embryonic antigen-3

TAT:

Twin arginine translocation

WBC:

White blood cell count

References

  1. Ezzat TM, Dhar DK, Newsome PN, Malago M, Olde Damink SW. Use of hepatocyte and stem cells for treatment of post-resectional liver failure: are we there yet? Liver Int. 2011;31:773–84.

    PubMed  Google Scholar 

  2. Schindl MJ, Redhead DN, Fearon KC, Garden OJ, Wigmore SJ, Edinburgh Liver S, et al. The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection. Gut. 2005;54:289–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Otsuka Y, Duffy JP, Saab S, Farmer DG, Ghobrial RM, Hiatt JR, et al. Postresection hepatic failure: successful treatment with liver transplantation. Liver Transpl. 2007;13:672–9.

    PubMed  Google Scholar 

  4. Watanabe T, Hoshikawa Y, Ishibashi N, Suzuki H, Notsuda H, Watanabe Y, et al. Mesenchymal stem cells attenuate ischemia-reperfusion injury after prolonged cold ischemia in a mouse model of lung transplantation. Surg Today. 2017;47:425–31.

    CAS  PubMed  Google Scholar 

  5. Saidi RF, Rajeshkumar B, Shariftabrizi A, Bogdanov AA, Zheng S, Dresser K, et al. Human adipose-derived mesenchymal stem cells attenuate liver ischemia-reperfusion injury and promote liver regeneration. Surgery. 2014;156:1225–311.

    PubMed  Google Scholar 

  6. Hannoush EJ, Elhassan I, Sifri ZC, Mohr AA, Alzate WD, Livingston DH. Role of bone marrow and mesenchymal stem cells in healing after traumatic injury. Surgery. 2013;153:44–51.

    PubMed  Google Scholar 

  7. Luo Y, Wang Y, Poynter JA, Manukyan MC, Herrmann JL, Abarbanell AM, et al. Pretreating mesenchymal stem cells with interleukin-1beta and transforming growth factor-beta synergistically increases vascular endothelial growth factor production and improves mesenchymal stem cell-mediated myocardial protection after acute ischemia. Surgery. 2012;151:353–63.

    PubMed  Google Scholar 

  8. Tautenhahn HM, Bruckner S, Baumann S, Winkler S, Otto W, von Bergen M, et al. Attenuation of postoperative acute liver failure by mesenchymal stem cell treatment due to metabolic implications. Ann Surg. 2016;263:546–56.

    PubMed  Google Scholar 

  9. Tautenhahn HM, Bruckner S, Uder C, Erler S, Hempel M, von Bergen M, et al. Mesenchymal stem cells correct haemodynamic dysfunction associated with liver injury after extended resection in a pig model. Sci Rep. 2017;7:2617.

    PubMed  PubMed Central  Google Scholar 

  10. Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA. 2010;107:8639–43.

    CAS  PubMed  Google Scholar 

  11. Kushida Y, Wakao S, Dezawa M. Muse cells are endogenous reparative stem cells. Adv Exp Med Biol. 2018;1103:43–68.

    CAS  PubMed  Google Scholar 

  12. Yamada Y, Wakao S, Kushida Y, Minatoguchi S, Mikami A, Higashi K, et al. S1P–S1PR2 axis mediates homing of muse cells into damaged heart for long-lasting tissue repair and functional recovery after acute myocardial infarction. Circ Res. 2018;122:1069–83.

    CAS  PubMed  Google Scholar 

  13. Dezawa M. Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of muse cells to tissue regeneration. Cell Transplant. 2016;25:849–61.

    PubMed  Google Scholar 

  14. Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc. 2013;8:1391–415.

    PubMed  Google Scholar 

  15. Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, et al. Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci USA. 2011;108:9875–80.

    CAS  PubMed  Google Scholar 

  16. Wakao S, Kuroda Y, Ogura F, Shigemoto T, Dezawa M. Regenerative effects of mesenchymal stem cells: contribution of muse cells, a novel pluripotent stem cell type that resides in mesenchymal cells. Cells. 2012;1:1045–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tanaka T, Nishigaki K, Minatoguchi S, Nawa T, Yamada Y, Kanamori H, et al. Mobilized Muse cells after acute myocardial infarction predict cardiac function and remodeling in the chronic phase. Circ J. 2018;82:561–71.

    CAS  PubMed  Google Scholar 

  18. Alessio N, Ozcan S, Tatsumi K, Murat A, Peluso G, Dezawa M, et al. The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell Cycle. 2017;16:33–44.

    CAS  PubMed  Google Scholar 

  19. Alessio N, Squillaro T, Ozcan S, Di Bernardo G, Venditti M, Melone M, et al. Stress and stem cells: adult Muse cells tolerate extensive genotoxic stimuli better than mesenchymal stromal cells. Oncotarget. 2018;9:19328–41.

    PubMed  PubMed Central  Google Scholar 

  20. Hosoyama K, Wakao S, Kushida Y, Ogura F, Maeda K, Adachi O, et al. Intravenously injected human multilineage-differentiating stress-enduring cells selectively engraft into mouse aortic aneurysms and attenuate dilatation by differentiating into multiple cell types. J Thorac Cardiovasc Surg. 2018;155(2301–13):e4.

    Google Scholar 

  21. Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H, et al. Therapeutic potential of adipose-derived SSEA-3-positive muse cells for treating diabetic skin ulcers. Stem Cells Transl Med. 2015;4:146–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, et al. Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells. 2016;34:160–73.

    CAS  PubMed  Google Scholar 

  23. Uchida H, Niizuma K, Kushida Y, Wakao S, Tominaga T, Borlongan CV, et al. Human Muse Cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke. 2017;48:428–35.

    PubMed  Google Scholar 

  24. Iseki M, Kushida Y, Wakao S, Akimoto T, Mizuma M, Motoi F, et al. Muse Cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis. Cell Transplant. 2017;26:821–40.

    PubMed  PubMed Central  Google Scholar 

  25. Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K, et al. A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components. Am J Transplant. 2016;16:468–83.

    CAS  PubMed  Google Scholar 

  26. Uchida N, Kushida Y, Kitada M, Wakao S, Kumagai N, Kuroda Y, et al. Beneficial effects of systemically administered human Muse Cells in adriamycin nephropathy. J Am Soc Nephrol. 2017;28:2946–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dezawa M. Clinical trials of muse cells. Adv Exp Med Biol. 2018;1103:305–7.

    CAS  PubMed  Google Scholar 

  28. Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S, et al. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev. 2014;23:717–28.

    CAS  PubMed  Google Scholar 

  29. Hori T. How to successfully resect 70 % of the liver in pigs to model an extended hepatectomy with an insufficient remnant or liver transplantation with a small-for-size graft. Surg Today. 2014;44:2201–7.

    PubMed  Google Scholar 

  30. Iida T, Yagi S, Taniguchi K, Hori T, Uemoto S. Improvement of morphological changes after 70% hepatectomy with portocaval shunt: preclinical study in porcine model. J Surg Res. 2007;143:238–46.

    PubMed  Google Scholar 

  31. Yang Z, Liu J, Liu H, Qiu M, Liu Q, Zheng L, et al. Isolation and characterization of SSEA3(+) stem cells derived from goat skin fibroblasts. Cell Reprogram. 2013;15:195–205.

    CAS  PubMed  Google Scholar 

  32. Nitobe Y, Nagaoki T, Kumagai G, Sasaki A, Liu X, Fujita T, et al. Neurotrophic factor secretion and neural differentiation potential of multilineage-differentiating stress-enduring (muse) cells derived from mouse adipose tissue. Cell Transplant. 2019;28:1132–9.

    PubMed  PubMed Central  Google Scholar 

  33. Nakamura T, Sakai K, Nakamura T, Matsumoto K. Hepatocyte growth factor twenty years on: much more than a growth factor. J Gastroenterol Hepatol. 2011;26:188–202.

    CAS  PubMed  Google Scholar 

  34. Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R, et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011;149:713–24.

    PubMed  Google Scholar 

  35. Ray S, Mehta NN, Golhar A, Nundy S. Post hepatectomy liver failure - a comprehensive review of current concepts and controversies. Ann Med Surg (Lond). 2018;34:4–10.

    CAS  Google Scholar 

  36. Bucur P, Bekheit M, Audebert C, Vignon-Clementel I, Vibert E. Simplified technique for 75% and 90% hepatic resection with hemodynamic monitoring in a large white swine model. J Surg Res. 2017;209:122–30.

    PubMed  Google Scholar 

  37. Chen HS, Joo DJ, Shaheen M, Li Y, Wang Y, Yang J, et al. Randomized trial of spheroid reservoir bioartificial liver in porcine model of posthepatectomy liver failure. Hepatology. 2019;69:329–42.

    CAS  PubMed  Google Scholar 

  38. Golriz M, Ashrafi M, Khajeh E, Majlesara A, Flechtenmacher C, Mehrabi A. Establishing a porcine model of small for size syndrome following liver resection. Can J Gastroenterol Hepatol. 2017;2017:5127178.

    PubMed  PubMed Central  Google Scholar 

  39. Mohkam K, Darnis B, Mabrut JY. Porcine models for the study of small-for-size syndrome and portal inflow modulation: literature review and proposal for a standardized nomenclature. J Hepatobiliary Pancreat Sci. 2016;23:668–80.

    PubMed  Google Scholar 

  40. Oh BJ, Jin SM, Hwang Y, Choi JM, Lee HS, Kim G, et al. Highly angiogenic, nonthrombogenic bone marrow mononuclear cell-derived spheroids in intraportal islet transplantation. Diabetes. 2018;67:473–85.

    CAS  PubMed  Google Scholar 

  41. Sang JF, Shi XL, Han B, Huang X, Huang T, Ren HZ, et al. Combined mesenchymal stem cell transplantation and interleukin-1 receptor antagonism after partial hepatectomy. World J Gastroenterol. 2016;22:4120–35.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid from Program for Basic and Clinical Research on Hepatitis of the Japan Agency for Medical Research and Development (AMED), (JP17fk0210303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Iseki.

Ethics declarations

Conflict of interest

Mari Dezawa received research funding from Life Science Institute, Inc. (LSII; Tokyo, Japan). Shohei Wakao holds a patent for Muse cells and the isolation method thereof, licensed to LSII.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iseki, M., Mizuma, M., Wakao, S. et al. The evaluation of the safety and efficacy of intravenously administered allogeneic multilineage-differentiating stress-enduring cells in a swine hepatectomy model. Surg Today 51, 634–650 (2021). https://doi.org/10.1007/s00595-020-02117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-020-02117-0

Keywords

Navigation