Skip to main content
Log in

Differences in sensitivity to tumor-specific CTLs between primary and metastatic esophageal cancer cell lines derived from the same patient

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

MHC antigens and adhesion molecules, such as the intracellular adhesion molecule (ICAM-I), play an important role in cellular immune response. We examined the expression patterns of these molecules in both primary and metastatic esophageal carcinoma cells from the same patient and evaluated the cellular immune responses against these cells.

Materials and methods

In the esophageal cancer patient (H122), tumor cell lines were established from primary and subcutaneous metastatic lesions. We compared the expression of cell surface molecules on the metastatic tumor cell line (H122SC) with that on the primary tumor cell line (H122ESO) using flow cytometry. Moreover, we analyzed the differences in cellular immune responses against these cell lines, which expressed similar levels of the Tara antigen, using the Tara antigen-specific CTL clone.

Results

H122SC ICAM-1 expression was significantly lower in H122ESO, and the Tara antigen-specific CTL clone produced lower levels of TNF in response to H122SC than H122ESO. ICAM-1 transfection into the H122SC rendered these cells as sensitive to the CTL clone as the H122ESO.

Conclusion

The metastatic tumor cells displayed lower regulated ICAM-1 expression levels and were less sensitive to specific CTLs. ICAM-1 downregulation may be one mechanism by which tumor cells escape immunologic surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ICAM-1:

Intracellular adhesion molecule-1

LFA-3:

Leukocyte function antigen 3

Fas-L:

Fas ligand

sICAM-1:

Serum soluble intracellular adhesion molecule-1

References

  1. Weiss L. Principles of metastasis, Chap 1–3. New York: Academic Press;1985.

  2. Rothlein R, Dustin ML, Marlin SD, Springer TA. A human intracellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol. 1986;137:1270–4.

    PubMed  CAS  Google Scholar 

  3. Dustin ML, Springer TA. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endotherial cells. J Cell Biol. 1988;107:321–31.

    Article  PubMed  CAS  Google Scholar 

  4. Faul RJ, Russ GR. Adhesion of lymphocytes to stimulated vascular endothelial cells occurs via ICAM-1-independent pathways. Transplant Proc. 1990;22:2099–100.

    Google Scholar 

  5. Johnson JP, Stade BG, Holzmann B, Schwable W, Riethmuller G. De novo expression of intercellular-adhesion molecule 1 in melanoma correlates with increased risk of metastasis. Proc Natl Acad Sci. 1989;86:641–4.

    Article  PubMed  CAS  Google Scholar 

  6. Natali P, Nicotra MR, Cavaliere R, Bigotti A, Romano G, Temponi M, Ferrone S. Differential expression of intercellular adhesion molecular 1 in primary and metastatic lesions. Cancer Res. 1990;15(50):1271–8.

    Google Scholar 

  7. Kageshita T, Nakamura T, Yamada M, Kuriya N, Arao T, Ferrone S. Differential expression of melanoma associated antigens in acral lentiginous melanoma and in nodular melanoma lesions. Cancer Res. 1991;51:1726–32.

    PubMed  CAS  Google Scholar 

  8. Vanky F, Wang P, Patarroyo M, Klein E. Expression of adhesion molecule ICAM-1 and major histocompatibility complex class I antigens on human cells is required for their interaction with autologous lymphocytes in vitro. Cancer Immunol Immunother. 1990;31:19–27.

    Article  PubMed  CAS  Google Scholar 

  9. Dustin ML, Springer TA. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature (Lond). 1989;341:619–24.

    Article  CAS  Google Scholar 

  10. Mukai S, Kagamu H, Shu S, Plautz GE. Critical role of CD11a (LFAT-1) in therapeutic efficacy of systemically transferred antitumor effector T cells. Cell Immunol. 1999;192:122–32.

    Article  PubMed  CAS  Google Scholar 

  11. Hamaï A, Meslin F, Benlalam H, Jalil A, Mehrpour M, Faure F, et al. ICAM-1 has a critical role in the regulation of metastatic melanoma tumor susceptibility to CTL lysis by interfering with PI3K/AKT pathway. Cancer Res. 2008;68:9854–64.

    Article  PubMed  Google Scholar 

  12. Sabin LH, Wittekind CH. TNM classification of malignant tumors. 5th ed. New York: Wiley-Liss; 1997.

    Google Scholar 

  13. Sugaya M, Takenoyama M, Shigematsu Y, Baba T, Fukuyama T, Nagata Y, et al. Identification of HLA-A24 restricted shared antigen recognized by autologous cytotoxic T lymphocytes from a patient with lung large cell carcinoma of the lung. Int J Cancer. 2007;120:1055–62.

    Article  PubMed  CAS  Google Scholar 

  14. Ichiki Y, Hanagiri T, Takenoyama M, Baba T, Fukuyama T, Nagata Y, et al. Tumor specific expression of survivin-2B in lung cancer as a novel target of immunotherapy. Lung Cancer. 2005;48:281–9.

    Article  PubMed  Google Scholar 

  15. Ichiki Y, Takenoyama M, Mizukami M, So T, Sugaya M, Yasuda M, et al. Simultaneous cellular and humoral immune response against mutated p53 in a patient with lung cancer. J Immunol. 2004;172:4844–50.

    PubMed  CAS  Google Scholar 

  16. Sugaya M, Takenoyama M, Osaki T, Yasuda M, Nagashima A, Sugio K, et al. Establishment of 15 cancer cell lines from patients with lung cancer and the potential tools for immunotherpy. Chest. 2002;122:282–8.

    Article  PubMed  Google Scholar 

  17. Chiari R, Foury E, Plaen ED, Baurain JF, Thonnard J, Coulie PG. Two antigens recognized by autologous cytotoxic T lymphocytes on a melanoma result from point mutation in an essential housekeeping gene. Cancer Res. 1999;59:5785–92.

    PubMed  CAS  Google Scholar 

  18. Echchakir H, Mami-Chouaib F, Vergnon I, Baurain JF, Karanikas V, Chouaib S, et al. A point mutation in the alpha-actinin-4 gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human lung carcinoma. Cancer Res. 2001;61:4078–408.

    PubMed  CAS  Google Scholar 

  19. Coia LR, Sauter ER. Esophageal cancer. Curr Probl Cancer. 1994;18:196–247.

    Article  Google Scholar 

  20. Tummala R, Williams SR. Esophageal cancer. In: Djulbegovi B, Sullivan DM, editors. Decision making in oncology evidence-based management, vol. 1. New York: Churchill Livingstone; 1997. p. 171–8.

    Google Scholar 

  21. Tepper J. Refluxtions on esophageal cancer: can we swallow the changes? J Clin Oncol. 2000;18:455–62.

    Google Scholar 

  22. Coia LR, Minsky BD, Berkey BA, John MJ, Haller D, Landry J, et al. Outcome of patients receiving radiation for cancer of esophagus: results of 1992–1994 patterns of care study. J Clin Oncol. 2000;18:455–62.

    PubMed  CAS  Google Scholar 

  23. Kelsen DP, Ginsberg R, Pajak TF, Sheahan DG, Gunderson L, Mortimer J, et al. Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med. 1998;339:1979–84.

    Article  PubMed  CAS  Google Scholar 

  24. Pouliquen X, Levard H, Hay JM, McGee K, Fingerhut A, Langlois ZO. 5-Fluouracil and cisplatin therapy after palliative surgical resection of squamous cell carcinoma of the esophagus. A multicenter randomized trial. Ann Surg. 1995;223:127–33.

    Article  Google Scholar 

  25. Schlag PM. Randomized trial of preoperative chemotherapy for squamous cell carcinoma of the esophagus. Arch Surg. 1992;127:1446–50.

    Article  PubMed  CAS  Google Scholar 

  26. Philip PA, Ajani JA. Has combined modality therapy improved the outlook in carcinoma of esophagus. Oncology (Huntingt). 1994;8:37–42.

    CAS  Google Scholar 

  27. Topalian SL, Solomon D, Rosenberg SA. Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol. 1989;142:3714–25.

    PubMed  CAS  Google Scholar 

  28. Xu X, Xu L, Ding S, Wu M, Tang Z, Fu W, et al. Treatment of 23 patients with advanced gastric cancer by intravenously transfer of autologous tumor-infiltrating lymphocytes combined with rIL-2. Chin Med Sci J. 1995;10:185–7.

    PubMed  CAS  Google Scholar 

  29. Nakazato H, Koike A, Saji S, Ogawa N, Sakamoto J. Efficacy of immunochemotherapy as adjuvant treatment after curative resection of gastric cancer. Lancet. 1994;343:1122–4.

    Article  PubMed  CAS  Google Scholar 

  30. Ueda Y, Yamahisa H, Tanioka Y, Fujiwara H, Fuji N, Itoh T, et al. Clinical application of adoptive immunotherapy and IL-2 for treatment of advanced digestive tract cancer. Hepatogastroenterology. 1999;46:1274–9.

    PubMed  CAS  Google Scholar 

  31. Jenkinson SR, Williams NA, Morgan DJ. The role of intercellular adhesion molecule-1/LFA-1 interactions in the generation of tumor-specific CD8+ T cell response. J Immunol. 2005;174:3401–7.

    PubMed  CAS  Google Scholar 

  32. Kaihara A, Iwagaki H, Gouchi A, Hizuta A, Isozaki H, Takakura N, et al. Soluble intercellular adhesion molecule-1 and natural killer cell activity in gastric cancer patients. Res Commun Mol Pathol. 1998;100:283–300.

    CAS  Google Scholar 

  33. Becker J, Dummer R, Hartmann AA, Burg G, Schmidt RE. Shedding of ICAM-1 from human melanoma cell lines induced by IFN-gamma and tumor necrosis factor-alpha. J Immunol. 1991;147:4398–401.

    PubMed  CAS  Google Scholar 

  34. Harning R, Mainolfi E, Bystryn JC, Henn M, Merluzzi VJ, Rothlein R. Serum levels of circulating intercellular adhesion molecule 1 in human malignant melanoma. Cancer Res. 1991;51:5003–5.

    PubMed  CAS  Google Scholar 

  35. Grothey A, Heistermann P, Philippou S, Voigtmann R. Serum levels of soluble intercellular adhesion molecule-1 (ICAM-1, CD54) in patients with non-small-cell lung cancer: correlation with histological expression of ICAM-1 and tumor stage. Br J Cancer. 1998;77:801–7.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang GJ, Adachi I. Serum levels of soluble intercellular adhesion molecule-1 and E-selectin in metastatic breast carcinoma: correlation with clinicopathological features and prognosis. Int J Oncol. 1999;14:71–7.

    PubMed  Google Scholar 

  37. Shimizu Y, Minemura M, Tsukishiro T, Kashii Y, Miyamoto M, Nishimori H, et al. Serum concentration of intercellular adhesion molecule-1 in patients with hepatocellular carcinoma is a marker of the disease progression and prognosis. Hepatology. 1995;22:525–31.

    PubMed  CAS  Google Scholar 

  38. Kitagawa T, Matsumoto K, Iriyama K. Serum cell adhesion molecules in patients with colorectal cancer. Surg Today. 1998;28:262–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded in part by a grant-in-aid from the Ministry of Health, Labour and Welfare, Japan and by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank Mrs. Kahoru Noda, Ayako Yamasaki and Miki Shimada for their technical expert help and appreciate the assistance of Mr. Brian Quinn for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinobu Ichiki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichiki, Y., Hanagiri, T., Takenoyama, M. et al. Differences in sensitivity to tumor-specific CTLs between primary and metastatic esophageal cancer cell lines derived from the same patient. Surg Today 42, 272–279 (2012). https://doi.org/10.1007/s00595-011-0083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-011-0083-7

Keywords

Navigation