Skip to main content

Advertisement

Log in

Understanding the gut–kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Type 2 diabetes mellitus (T2DM) has a rising prevalence and gut microbiota involvement is increasingly recognized. Diabetic nephropathy (DN) is a major complication of T2DM. The aim of the study was to understand the gut–kidney axis by an analysis of gut microbiota composition among biopsy-proven DN, T2DM without kidney disease, and healthy control.

Methods

Fecal samples were collected from 14 DNs, 14 age/gender-matched T2DMs without renal diseases (DM), 14 age and gender-matched healthy controls (HC) and household contacts (HH) of DM group. The microbiota composition was analyzed by 16sRNA microbial profiling approach.

Results

Substantial differences were found in the richness of gut microbiota and the variation of bacteria population in DM compared to HC, and DN compared to DM, respectively. DM could be accurately distinguished from age/gender-matched healthy controls by the variable of genus g_Prevotella_9 (AUC = 0.9), and DN patients could be accurately distinguished from age/gender-matched DM by the variables of two genera (g_Escherichia-Shigella and g_Prevotella_9, AUC = 0.86). The microbiota composition of HH group was close to that of HC group, and was different from DM group. Under the same diet, DM could be more accurately detected by the same genus (g_Prevotella_9, AUC = 0.92).

Conclusion

Gut microbiota composition was explored to be related to the occurrence of biopsy-proven DN from DM. DM could be distinguished from HC by detecting g_Prevotella_9 level in feces, while DN was different from DM by the variables of g_Escherichia-Shigella and g_Prevotella_9, which potentially contributed to the physiopathological diagnosis of DN from DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Demmer RT, Zuk AM, Rosenbaum M, Desvarieux M (2013) Prevalence of diagnosed and undiagnosed type 2 diabetes mellitus among US adolescents: results from the continuous NHANES, 1999–2010. Am J Epidemiol 178(7):1106–1113

    PubMed  PubMed Central  Google Scholar 

  2. Ma RC, Lin X, Jia W (2014) Causes of type 2 diabetes in China. Lancet Diabetes Endocrinol 2(12):980–991

    PubMed  Google Scholar 

  3. Pitts-Tucker T (2012) Asian and Afro-Caribbean Britons have double the risk of type 2 diabetes. Br Med J 345:e6135

    Google Scholar 

  4. Schellenberg ES, Dryden DM, Vandermeer B, Ha C, Korownyk C (2013) Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 159(8):543–551

    PubMed  Google Scholar 

  5. Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103

    CAS  PubMed  Google Scholar 

  6. Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60

    CAS  PubMed  Google Scholar 

  7. Zhang X, Shen D, Fang Z et al (2013) Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8(8):e71108

    CAS  PubMed  PubMed Central  Google Scholar 

  8. de Vos WM, Nieuwdorp M (2013) Genomics. A gut prediction. Nature 498(7452):48–49

    PubMed  Google Scholar 

  9. Lau E, Carvalho D, Pina-Vaz C, Barbosa JA, Freitas P (2015) Beyond gut microbiota: understanding obesity and type 2 diabetes. Hormones 14(3):358–369

    PubMed  Google Scholar 

  10. Barsoum RS (2006) Chronic kidney disease in the developing world. N Engl J Med 354(10):997–999

    CAS  PubMed  Google Scholar 

  11. Du P, Fan B, Han H et al (2013) NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Kidney Int 84(2):265–276

    CAS  PubMed  Google Scholar 

  12. Zhang L, Long J, Jiang W et al (2016) Trends in chronic kidney disease in China. N Engl J Med 375(9):905–906

    PubMed  Google Scholar 

  13. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J (2011) Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 305(24):2532–2539

    PubMed  PubMed Central  Google Scholar 

  14. Afkarian M, Sachs MC, Kestenbaum B et al (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 24(2):302–308

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fineberg D, Jandeleit-Dahm KA, Cooper ME (2013) Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol 9(12):713–723

    CAS  PubMed  Google Scholar 

  16. Li L, Ma L, Fu P (2017) Gut microbiota-derived short-chain fatty acids and kidney diseases. Drug Des Dev Ther 11:3531–3542

    CAS  Google Scholar 

  17. Ramezani A, Raj DS (2014) The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 25(4):657–670

    CAS  PubMed  Google Scholar 

  18. Cai L, Wu H, Li D, Zhou K, Zou F (2015) Type 2 diabetes biomarkers of human gut microbiota selected via iterative sure independent screening method. PLoS One 10(10):e0140827

    PubMed  PubMed Central  Google Scholar 

  19. Guo Z, Zhang J, Wang Z et al (2016) Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep 6:20602

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Vaziri ND, Wong J, Pahl M et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315

    PubMed  Google Scholar 

  21. Levey AS, de Jong PE, Coresh J et al (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 80(1):17–28

    PubMed  Google Scholar 

  22. Bakris GL, Agarwal R, Chan JC et al (2015) Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 314(9):884–894

    CAS  PubMed  Google Scholar 

  23. Brenner D, Hiergeist A, Adis C et al (2018) The fecal microbiome of ALS patients. Neurobiol Aging 61:132–137

    PubMed  Google Scholar 

  24. Hiergeist A, Reischl U, Gessner A (2016) Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. Int J Med Microbiol 306(5):334–342

    CAS  PubMed  Google Scholar 

  25. Mcardle BH, Anderson MJ (2011) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1):290–297

    Google Scholar 

  26. Zapala MA, Schork NJ (2006) Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc Natl Acad Sci USA 103(51):19430–19435

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chow J, Tang H, Mazmanian SK (2011) Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol 23(4):473–480

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904

    CAS  PubMed  Google Scholar 

  30. Forslund K, Hildebrand F, Nielsen T et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266

    CAS  PubMed  PubMed Central  Google Scholar 

  31. De Angelis M, Montemurno E, Piccolo M et al (2014) Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS One 9(6):e99006

    PubMed  PubMed Central  Google Scholar 

  32. Jiang S, Xie S, Lv D et al (2017) Alteration of the gut microbiota in Chinese population with chronic kidney disease. Sci Rep 7(1):2870

    PubMed  PubMed Central  Google Scholar 

  33. Poesen R, Windey K, Neven E et al (2016) The influence of CKD on colonic microbial metabolism. J Am Soc Nephrol 27(5):1389–1399

    CAS  PubMed  Google Scholar 

  34. Nicholson JK, Holmes E, Kinross J et al (2012) Host–gut microbiota metabolic interactions. Science 336(6086):1262–1267

    CAS  PubMed  Google Scholar 

  35. Chen T, Zhang X, Long Y et al (2012) The association of plasma free amino acids with liver enzymes in Type 2 diabetic patients. J Endocrinol Investig 35(8):772–775

    CAS  Google Scholar 

  36. Li M, Wang X, Aa J et al (2013) GC/TOFMS analysis of metabolites in serum and urine reveals metabolic perturbation of TCA cycle in db/db mice involved in diabetic nephropathy. Am J Physiol Renal Physiol 304(11):F1317–F1324

    CAS  PubMed  Google Scholar 

  37. Nakamura H, Jinzu H, Nagao K et al (2014) Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients. Nutr Diabetes 4:e133

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Scanlan PD, Shanahan F, Clune Y et al (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10(3):789–798

    CAS  PubMed  Google Scholar 

  39. Vitali B, Ndagijimana M, Cruciani F et al (2010) Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiol 10:4

    PubMed  PubMed Central  Google Scholar 

  40. Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y (2018) Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 9(5):397–403

    PubMed  PubMed Central  Google Scholar 

  41. Andrade-Oliveira V, Amano MT, Correa-Costa M et al (2015) Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 26(8):1877–1888

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND (2014) Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 39(3):230–237

    CAS  PubMed  Google Scholar 

  43. Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450

    CAS  PubMed  Google Scholar 

  44. Finegold SM, Dowd SE, Gontcharova V et al (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16(4):444–453

    CAS  PubMed  Google Scholar 

  45. Rizzatti G, Lopetuso LR, Gibiino G et al (2017) Proteobacteria: a common factor in human diseases. Biomed Res Int 2017(9):1–7

    Google Scholar 

  46. Wassenaar TM, Zimmermann K (2018) Lipopolysaccharides in food, food supplements, and probiotics: should we be worried? Eur J Microbiol Immunol 8(3):63–69

    CAS  Google Scholar 

  47. Carrero JJ, Stenvinkel P (2009) Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal. Clin J Am Soc Nephrol 4(Suppl 1):S49–S55

    CAS  PubMed  Google Scholar 

  48. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26(4):822–880

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63(3):223–234

    CAS  Google Scholar 

  50. Liu J (2014) Ethanol and liver: recent insights into the mechanisms of ethanol-induced fatty liver. World J Gastroenterol 20(40):14672–14685

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mahmoodpoor F, Rahbar Saadat Y, Barzegari A, Ardalan M, Zununi Vahed S (2017) The impact of gut microbiota on kidney function and pathogenesis. Biomed Pharmacother 93:412–419

    CAS  PubMed  Google Scholar 

Download references

Funding

The study is supported by National Key Research & Development Program of China (2016YFC1305403), National Natural Science Foundation of China (81700634) and International cooperation project (2016HH0069) funded by Science and Technology Department of Sichuan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Ma or Ping Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was approved by Biomedical Ethics Committee of West China Hospital of Sichuan University (No. 2016-273). All the procedures followed the Declaration of Helsinki principles.

Informed consent

All participants provided written informed consent before enrolment in the study.

Additional information

Managed by Massimo Federici.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 166 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, S., Li, L., Li, L. et al. Understanding the gut–kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition. Acta Diabetol 56, 581–592 (2019). https://doi.org/10.1007/s00592-019-01316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-019-01316-7

Keywords

Navigation