Skip to main content
Log in

Dietary branched-chain amino acids intake exhibited a different relationship with type 2 diabetes and obesity risk: a meta-analysis

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aim

To assess whether oral branched-chain amino acids (BCAA) supplementation exerts influence on circulating BCAA and the significance of dietary BCAA in type 2 diabetes and obesity risk.

Method

We searched PUBMED, EMBASE and Cochrane library through June 2018 to retrieve and screen published reports for inclusion in the meta-analysis after methodological assessment. Heterogeneity of studies was evaluated using I2 statistics, while sensitivity analysis and funnel plot were used to evaluate the potential effect of individual studies on the overall estimates and publication bias, respectively, using RevMan 5.3.

Result

Eight articles on randomized clinical trial of oral BCAA supplementation, and seven articles on dietary BCAA intake and type 2 diabetes/obesity risks were eligible for inclusion in our meta-analyses. Mean difference and 95% confidence interval (CI) of circulating leucine was 39.65 (3.54, 75.76) µmol/L, P = 0.03 post-BCAA supplementation. Also, OR and 95% CI for higher total BCAA intake and metabolic disorder risks were, 1.32 (1.14, 1.53), P = 0.0003—type 2 diabetes and 0.62 (0.47, 0.82), P = 0.0008—obesity.

Conclusion

Oral BCAA supplementation exerts modest influence on circulating leucine profile and higher total BCAA intake is positively and contra-positively associated with type 2 diabetes and obesity risk, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li YC et al (2015) The ratio of dietary branched-chain amino acids is associated with a lower prevalence of obesity in young Northern Chinese adults: an internet-based cross-sectional study. Nutrients 7(11):9573–9589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17

    Article  CAS  PubMed  Google Scholar 

  3. Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Annu Rev Nutr 4:409–454

    Article  CAS  PubMed  Google Scholar 

  4. Green CR et al (2016) Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol 12(1):15–21

    Article  CAS  PubMed  Google Scholar 

  5. Shimomura Y et al (2015) Novel physiological functions of branched-chain amino acids. J Nutr Sci Vitaminol (Tokyo) 61 Suppl:S112–S114

    Article  Google Scholar 

  6. Badoud F et al (2014) Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese. J Proteome Res 13(7):3455–3466

    Article  CAS  PubMed  Google Scholar 

  7. Batch BC et al (2013) Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism 62(7):961–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Floegel A et al (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62(2):639–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Iida M et al (2016) Profiling of plasma metabolites in postmenopausal women with metabolic syndrome. Menopause 23:749

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wang TJ et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wurtz P et al (2013) Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36(3):648–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yamakado M et al (2015) Plasma free amino acid profiles predict four-year risk of developing diabetes, metabolic syndrome, dyslipidemia, and hypertension in Japanese population. Sci Rep 5:11918

    Article  PubMed Central  PubMed  Google Scholar 

  13. Yamakado M et al (2012) Plasma amino acid profile is associated with visceral fat accumulation in obese Japanese subjects. Clin Obes 2(1-2):29–40

    Article  CAS  PubMed  Google Scholar 

  14. Newgard CB et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9(4):311–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cogate PG et al (2015) Consumption of branched-chain amino acids is inversely associated with central obesity and cardiometabolic features in a population of brazilian middle-aged men: potential role of leucine intake. J Nutr Health Aging 19(7):771–777

    Article  CAS  PubMed  Google Scholar 

  16. Jennings A et al (2016) Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: a twin study. Int J Cardiol 223:992–998

    Article  PubMed Central  PubMed  Google Scholar 

  17. Isanejad M et al (2017) Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative. Br J Nutr 117(11):1523–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okekunle AP et al (2018) Dietary intakes of branched-chained amino acid and risk of type 2 diabetes in adults: the Harbin cohort study on diet, nutrition and chronic non-communicable diseases study. Can J Diabetes 42:484–492

    Article  PubMed  Google Scholar 

  19. Zheng Y et al (2016) Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int J Epidemiol 45:1482–1492

    Article  PubMed Central  PubMed  Google Scholar 

  20. Adams SH (2011) Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr 2(6):445–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lynch CJ, Adams SH (2014) Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10(12):723–736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhao X et al., (2016). The Relationship between branched-chain amino acid related metabolomic signature and insulin resistance: a systematic review. J Diabetes Res 2016:2794591

    PubMed Central  PubMed  Google Scholar 

  23. Okekunle AP et al (2017) Abnormal circulating amino acid profiles in multiple metabolic disorders. Diabetes Res Clin Pract 132:45–58

    Article  CAS  PubMed  Google Scholar 

  24. Higgins JPT, Green S (eds) (2011) Cochrane handbook for systematic reviews of interventions. Version 5.1.0. 2011. The Cochrane Collaboration. [updated March 2011]. http://www.handbook.cochrane.org. Accessed May 2016

  25. Halpern SHaD, M. J (2005) Appendix: Jadad scale for reporting randomized controlled trials. evidence-based obstetric anesthesia. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  26. Wells GA et al (2014) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed May 2016

  27. Borenstein M et al (2017) Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Res Synth Methods 8:5–18

    Article  PubMed  Google Scholar 

  28. Casperson SL et al (2012) Leucine supplementation chronically improves muscle protein synthesis in older adults consuming the RDA for protein. Clin Nutr 31(4):512–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ispoglou T et al (2016) Double-blind, placebo-controlled pilot trial of L-Leucine-enriched amino-acid mixtures on body composition and physical performance in men and women aged 65–75 years. Eur J Clin Nutr 70(2):182–188

    Article  CAS  PubMed  Google Scholar 

  30. MacLean DA, Graham TE (1993) Branched-chain amino acid supplementation augments plasma ammonia responses during exercise in humans. J Appl Physiol (1985) 74(6):2711–2717

    Article  CAS  Google Scholar 

  31. Matsumoto T et al (2014) Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men. Springerplus 3:35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mikulski T et al (2015) Effects of supplementation with branched chain amino acids and ornithine aspartate on plasma ammonia and central fatigue during exercise in healthy men. Folia Neuropathol 53(4):377–386

    Article  PubMed  Google Scholar 

  33. Pitkanen HT et al (2003) Leucine supplementation does not enhance acute strength or running performance but affects serum amino acid concentration. Amino Acids 25(1):85–94

    Article  CAS  PubMed  Google Scholar 

  34. Shimomura Y et al (2010) Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int J Sport Nutr Exerc Metab 20(3):236–244

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y et al (2011) Effects of branched-chain amino acid supplementation on plasma concentrations of free amino acids, insulin, and energy substrates in young men. J Nutr Sci Vitaminol (Tokyo) 571:114–117

    Article  Google Scholar 

  36. Nagata C et al (2013) Branched-chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study. Am J Epidemiol 178(8):1226–1232

    Article  PubMed  Google Scholar 

  37. Qin LQ et al (2011) Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults. J Nutr 141(2):249–254

    Article  CAS  PubMed  Google Scholar 

  38. Kephart WC et al (2015) Ten weeks of branched-chain amino acid supplementation improves select performance and immunological variables in trained cyclists. Amino Acids 48:779–789

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y et al (2007) Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56(6):1647–1654

    Article  CAS  PubMed  Google Scholar 

  40. Nishimura J et al (2010) Isoleucine prevents the accumulation of tissue triglycerides and upregulates the expression of PPARalpha and uncoupling protein in diet-induced obese mice. J Nutr 140(3):496–500

    Article  CAS  PubMed  Google Scholar 

  41. Chen IF et al (2016) Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: a randomized controlled trial. J Int Soc Sports Nutr 13:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Tang FC (2006) Influence of branched-chain amino acid supplementation on urinary protein metabolite concentrations after swimming. J Am Coll Nutr 25(3):188–194

    Article  CAS  PubMed  Google Scholar 

  43. Dudgeon WD, Kelley EP, Scheett TP (2016) In a single-blind, matched group design: branched-chain amino acid supplementation and resistance training maintains lean body mass during a caloric restricted diet. J Int Soc Sports Nutr 13:1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Samuelsson H et al (2016) Intake of branched-chain or essential amino acids attenuates the elevation in muscle levels of PGC-1alpha4 mRNA caused by resistance exercise. Am J Physiol Endocrinol Metab 311(1):E246–E251

    Article  PubMed  Google Scholar 

  45. Murphy CH et al (2016) Leucine supplementation enhances integrative myofibrillar protein synthesis in free-living older men consuming lower- and higher-protein diets: a parallel-group crossover study. Am J Clin Nutr 104(6):1594–1606

    Article  CAS  PubMed  Google Scholar 

  46. Cavallaro NL et al (2016) A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids. Food Nutr Res 60:28592

    Article  CAS  PubMed  Google Scholar 

  47. Esko T et al (2017) Metabolomic profiles as reliable biomarkers of dietary composition. Am J Clin Nutr 105(3):547–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Fontana L et al (2016) Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep 16(2):520–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Zheng Y et al (2016) Weight-loss diets and 2-y changes in circulating amino acids in 2 randomized intervention trials. Am J Clin Nutr 103(2):505–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Piccolo BD et al (2015) Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial. J Nutr 145(4):691–700

    Article  CAS  PubMed  Google Scholar 

  51. Markova M et al (2017) Isocaloric diets high in animal or plant protein reduce liver fat and inflammation in individuals with type 2 diabetes. Gastroenterology 152(3):571–585 e8

    Article  CAS  PubMed  Google Scholar 

  52. Haufe S et al., Branched-chain amino acid catabolism rather than amino acids plasma concentrations is associated with diet-induced changes in insulin resistance in overweight to obese individuals. Nutr Metab Cardiovasc Dis 27(10):858–864

  53. Cummings CN et al (2018) Restoration of metabolic health by decreased consumption of branched-chain amino acids. J Physiol 596(4):623–645

    Article  CAS  PubMed  Google Scholar 

  54. Macotela Y et al (2011) Dietary leucine—an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One 6(6):e21187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Merz B et al (2018) Dietary pattern and plasma BCAA-variations in healthy men and women-results from the KarMeN study. Nutrients 10(5):623

    Article  PubMed Central  CAS  Google Scholar 

  56. Okekunle AP et al (2018) Higher intakes of energy-adjusted dietary amino acids are inversely associated with obesity risk. Amino Acids. https://doi.org/10.1007/s00726-018-2672-x

    Article  PubMed  Google Scholar 

  57. Tobias DK et al (2018) Dietary intakes and circulating concentrations of branched-chain amino acids in relation to incident type 2 diabetes risk among high-risk women with a history of gestational diabetes mellitus. Clin Chem 648:1203–1210

    Article  CAS  Google Scholar 

Download references

Funding

Funds from the Postdoctoral Science Foundation (2016M600264 and LBH—Z16253) were used in conducting this study. APO (2015BSZ778) and JUO (2017BSZ011594) were supported by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

APO, RNF and CLL conceived and designed the meta-analysis. APO, MZ, ZW, XYW and JUO carried out the literature search, data acquisition and analysis. APO and RNF reviewed the literature search, data acquisition, and quality assessment. APO, RNF and CLL wrote the paper. APO, MZ, ZW, RNF and CLL revised the paper, and all authors approved the final version for publication.

Corresponding authors

Correspondence to Rennan Feng or Chunlong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human or animal subject performed by any of the authors.

Informed consent

Not applicable.

Additional information

Managed by Massimo Federici.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 89 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okekunle, A.P., Zhang, M., Wang, Z. et al. Dietary branched-chain amino acids intake exhibited a different relationship with type 2 diabetes and obesity risk: a meta-analysis. Acta Diabetol 56, 187–195 (2019). https://doi.org/10.1007/s00592-018-1243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-018-1243-7

Keywords

Navigation