Skip to main content
Log in

Baseline heterogeneity in glucose metabolism marks the risk for type 1 diabetes and complicates secondary prevention

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Non-diabetic children with multiple islet autoantibodies were recruited to a secondary prevention trial. The objective was to determine the predictive value of baseline (1) HbA1c and metabolic variables derived from intravenous (IvGTT) and oral glucose tolerance tests (OGTT), (2) insulin resistance and (3) number, type and levels of islet autoantibodies, for progression to type 1 diabetes.

Methods

Children [n = 50, median 5.1 (4–17.9) years] with autoantibodies to glutamate decarboxylase (GAD65A) and at least one of insulinoma-associated protein 2 (IA-2A), insulin or ZnT8 transporter (ZnT8RA, ZnT8WA, ZnT8QA) were screened with IvGTT and OGTT and followed for a minimum of 2 years.

Results

Baseline first phase insulin response (sum of serum-insulin at 1 and 3 min during IvGTT; FPIR) ≤3 μU/mL [HR 4.42 (CI 1.40–14.0) p = 0.011] and maximal plasma glucose ≥11.1 mmol/L measured at 30, 60 and/or 90 min during OGTT [HR 6.13 (CI 1.79–21.0) p = 0.0039] were predictors for progression to diabetes. The combination of FPIR from IvGTT and maximal plasma glucose during OGTT predicted diabetes in 10/12 children [HR 9.17 (CI 2.0–42.0) p = 0.0043]. High-level IA-2A, but not number of autoantibodies, correlated to dysglycemia during OGTT (p = 0.008) and to progression to type 1 diabetes [HR 4.98 (CI 1.09–22.0) p = 0.039].

Conclusions

Baseline FPIR, maximal plasma glucose ≥11.1 at 30, 60 or 90 min during OGTT and high-level IA-2A need to be taken into account when randomizing islet autoantibody positive non-diabetic children to secondary prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, Winkler C, Ilonen J, Veijola R, Knip M, Bonifacio E, Eisenbarth GS (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309(23):2473–2479. doi:10.1001/jama.2013.6285

    Article  CAS  PubMed  Google Scholar 

  2. Parikka V, Näntö-Salonen K, Saarinen M, Simell T, Ilonen J, Hyöty H, Veijola R, Knip M, Simell O (2012) Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia 55(7):1926–1936. doi:10.1007/s00125-012-2523-3

    Article  CAS  PubMed  Google Scholar 

  3. Salminen K, Sadeharju K, Lonnrot M, Vahasalo P, Kupila A, Korhonen S, Ilonen J, Simell O, Knip M, Hyoty H (2003) Enterovirus infections are associated with the induction of beta-cell autoimmunity in a prospective birth cohort study. J Med Virol 69(1):91–98. doi:10.1002/jmv.10260

    PubMed  Google Scholar 

  4. Lonnrot M, Korpela K, Knip M, Ilonen J, Simell O, Korhonen S, Savola K, Muona P, Simell T, Koskela P, Hyoty H (2000) Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes 49(8):1314–1318

    Article  CAS  PubMed  Google Scholar 

  5. Kondrashova A, Hyoty H (2014) Role of viruses and other microbes in the pathogenesis of type 1 diabetes. Int Rev Immunol 33(4):284–295. doi:10.3109/08830185.2014.889130

    CAS  PubMed  Google Scholar 

  6. Chmiel R, Beyerlein A, Knopff A, Hummel S, Ziegler AG, Winkler C (2014) Early infant feeding and risk of developing islet autoimmunity and type 1 diabetes. Acta Diabetol. doi:10.1007/s00592-014-0628-5

    PubMed  Google Scholar 

  7. Eringsmark Regnell S, Lernmark A (2013) The environment and the origins of islet autoimmunity and Type 1 diabetes. Diabet Med 30(2):155–160. doi:10.1111/dme.12099

    CAS  PubMed  Google Scholar 

  8. Beyerlein A, Thiering E, Pflueger M, Bidlingmaier M, Stock J, Knopff A, Winkler C, Heinrich J, Ziegler AG (2014) Early infant growth is associated with the risk of islet autoimmunity in genetically susceptible children. Pediatr Diabetes 15(7):534–542. doi:10.1111/pedi.12118

    CAS  PubMed  Google Scholar 

  9. Cubas-Duenas I, Cabrera-Rode E, Sarmiento L, Molina G, Fonseca M, Arranz C, Dominguez E, Gonzalez P, Vera M, Diaz-Horta O (2013) First-degree relatives of persons with type 1 diabetes: insulin resistance and enterovirus infection are associated with different patterns of islet cell autoimmunity. Acta Diabetol 50(2):233–239. doi:10.1007/s00592-011-0297-6

    CAS  PubMed  Google Scholar 

  10. Hummel M, Bonifacio E, Schmid S, Walter M, Knopff A, Ziegler AG (2004) Brief communication: early appearance of islet autoantibodies predicts childhood type 1 diabetes in offspring of diabetic parents. Ann Intern Med 140(11):882–886

    PubMed  Google Scholar 

  11. Orban T, Sosenko JM, Cuthbertson D, Krischer JP, Skyler JS, Jackson R, Yu L, Palmer JP, Schatz D, Eisenbarth G, Diabetes Prevention Trial-Type 1 Study G (2009) Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 32(12):2269–2274. doi:10.2337/dc09-0934

    Article  PubMed Central  PubMed  Google Scholar 

  12. Stene LC, Barriga K, Hoffman M, Kean J, Klingensmith G, Norris JM, Erlich HA, Eisenbarth GS, Rewers M (2006) Normal but increasing hemoglobin A1c levels predict progression from islet autoimmunity to overt type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). Pediatric diabetes 7(5):247–253. doi:10.1111/j.1399-5448.2006.00198.x

    Article  PubMed  Google Scholar 

  13. Sosenko JM, Palmer JP, Rafkin-Mervis L, Krischer JP, Cuthbertson D, Mahon J, Greenbaum CJ, Cowie CC, Skyler JS, Diabetes Prevention Trial-Type 1 Study G (2009) Incident dysglycemia and progression to type 1 diabetes among participants in the Diabetes Prevention Trial-Type 1. Diabetes Care 32(9):1603–1607. doi:10.2337/dc08-2140

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sosenko JM, Palmer JP, Greenbaum CJ, Mahon J, Cowie C, Krischer JP, Chase HP, White NH, Buckingham B, Herold KC, Cuthbertson D, Skyler JS (2006) Patterns of metabolic progression to type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 29(3):643–649

    Article  PubMed  Google Scholar 

  15. Siljander HT, Hermann R, Hekkala A, Lähde J, Tanner L, Keskinen P, Ilonen J, Simell O, Veijola R, Knip M (2013) Insulin secretion and sensitivity in the prediction of type 1 diabetes in children with advanced β-cell autoimmunity. Eur J Endocrinol 169(4):479–485. doi:10.1530/EJE-13-0206

    CAS  PubMed  Google Scholar 

  16. Sosenko JM, Skyler JS, Mahon J, Krischer JP, Beam CA, Boulware DC, Greenbaum CJ, Rafkin LE, Cowie C, Cuthbertson D, Palmer JP, Group TDTS, Group DPT-TS (2012) The application of the diabetes prevention trial-type 1 risk score for identifying a preclinical state of type 1 diabetes. Diabetes Care 35(7):1552–1555. doi:10.2337/dc12-0011

    Article  PubMed Central  PubMed  Google Scholar 

  17. American Diabetes A (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90. doi:10.2337/dc14-S081

    Article  Google Scholar 

  18. Andersson C, Carlsson A, Cilio C, Cedervall E, Ivarsson SA, Jonsdottir B, Jonsson B, Larsson K, Neiderud J, Lernmark A, Elding Larsson H, Di A-ITSG (2013) Glucose tolerance and beta-cell function in islet autoantibody-positive children recruited to a secondary prevention study. Pediatr Diabetes 14(5):341–349. doi:10.1111/pedi.12023

    CAS  PubMed  Google Scholar 

  19. Ranke MB (2003) Diagnostics of endocrine function in children and adolescents. In: Karger (Ed), 3rd revised and extended edition

  20. Andersson C, Larsson K, Vaziri-Sani F, Lynch K, Carlsson A, Cedervall E, Jonsson B, Neiderud J, Mansson M, Nilsson A, Lernmark A, Elding Larsson H, Ivarsson SA (2011) The three ZNT8 autoantibody variants together improve the diagnostic sensitivity of childhood and adolescent type 1 diabetes. Autoimmunity 44(5):394–405. doi:10.3109/08916934.2010.540604

    Article  CAS  PubMed  Google Scholar 

  21. Karlberg J, Luo ZC, Albertsson-Wikland K (2001) Body mass index reference values (mean and SD) for Swedish children. Acta Paediatr 90(12):1427–1434

    CAS  PubMed  Google Scholar 

  22. Elding Larsson H, Vehik K, Gesualdo P, Akolkar B, Hagopian W, Krischer J, Lernmark A, Rewers M, Simell O, She JX, Ziegler A, Haller MJ, Group tTS (2013) Children followed in the TEDDY study are diagnosed with type 1 diabetes at an early stage of disease. Pediatr Diabetes. doi:10.1111/pedi.12066

    Google Scholar 

  23. Sosenko JM, Skyler JS, Beam CA, Krischer JP, Greenbaum CJ, Mahon J, Rafkin LE, Matheson D, Herold KC, Palmer JP, Groups TDTaDPTTS (2013) Acceleration of the loss of the first-phase insulin response during the progression to type 1 diabetes in diabetes prevention trial-type 1 participants. Diabetes 62(12):4179–4183. doi:10.2337/db13-0656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sosenko JM, Skyler JS, Palmer JP, Krischer JP, Yu L, Mahon J, Beam CA, Boulware DC, Rafkin L, Schatz D, Eisenbarth G, Type 1 Diabetes TrialNet Study G, Diabetes Prevention Trial-Type 1 Study G (2013) The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoantibody risk score in relatives of type 1 diabetic patients. Diabetes Care 36(9):2615–2620. doi:10.2337/dc13-0425

    Article  PubMed Central  PubMed  Google Scholar 

  25. Sosenko JM, Skyler JS, Palmer JP, Krischer JP, Cuthbertson D, Yu L, Schatz DA, Orban T, Eisenbarth G, Groups DPTTaTDTS (2011) A longitudinal study of GAD65 and ICA512 autoantibodies during the progression to type 1 diabetes in Diabetes Prevention Trial-Type 1 (DPT-1) participants. Diabetes Care 34(11):2435–2437. doi:10.2337/dc11-0981

    Article  PubMed Central  PubMed  Google Scholar 

  26. Decochez K, Truyen I, van der Auwera B, Weets I, Vandemeulebroucke E, de Leeuw IH, Keymeulen B, Mathieu C, Rottiers R, Pipeleers DG, Gorus FK, Belgian Diabetes R (2005) Combined positivity for HLA DQ2/DQ8 and IA-2 antibodies defines population at high risk of developing type 1 diabetes. Diabetologia 48(4):687–694. doi:10.1007/s00125-005-1702-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the participating families and Diamyd Medical AB for donating the GAD-Alum. Our research is supported in part by the Swedish Research Council (Grant 14064), Swedish Childhood Diabetes Foundation, Swedish Diabetes Association, National Institutes of Health (DK26190), UMAS Fund, the Knut and Alice Wallenberg Foundation, and the Skåne County Council for Research and Development and the Juvenile Diabetes Research Foundation (17-2011-576).

Conflict of interest

Helena Elding Larsson, Christer Larsson and Åke Lernmark declare that they have no conflict of interests.

Ethical standard

The study was approved by the Regional Ethical Board in Lund, Sweden.

Human and animal rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1976, as revised in 2008.

Informed consent disclosure

Informed consent was obtained from all participants or their legal representatives prior to inclusion in the study.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Helena Elding Larsson.

Additional information

Managed by Antonio Secchi.

EuCT 2008-007484-16, NCT01122446.

Appendix

Appendix

Members of the DiAPREV-IT study group are

PI: Helena Elding Larsson (Malmö), Co-PI: Åke Lernmark (Malmö), Study nurses: Caroline Nilsson, Gertie Hansson.

Lab personnel

Jeanette Arvastsson, Rasmus Bennet, Charlotte Brundin, Ida Jönsson, Zeliha Mestan, Anita Ramelius, and Ingrid Wigheden.

Physicians

Cecilia Andersson (Malmö), Susanne Bach Meineche (Malmö), Annelie Carlsson (Lund), Elisabeth Cederwall (Ängelholm), Corrado Cilio (Malmö), Sten Ivarsson (Malmö), Berglind Jonsdottir (Malmö), Björn Jönsson (Ystad), Karin Larsson (Kristianstad), Bengt Lindberg (Malmö), Markus Lundgren (Kristianstad), Jan Neiderud (Helsingborg), Ann Olsson (Trollhättan), Lars Åke Persson (Uppsala), Eva Örtqvist (Stockholm).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elding Larsson, H., Larsson, C., Lernmark, Å. et al. Baseline heterogeneity in glucose metabolism marks the risk for type 1 diabetes and complicates secondary prevention. Acta Diabetol 52, 473–481 (2015). https://doi.org/10.1007/s00592-014-0680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0680-1

Keywords

Navigation