Skip to main content

Advertisement

Log in

MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

MicroRNAs are a class of negative regulators of gene expression, which have been shown to be involved in the development of endocrine pancreas and in the regulation of insulin secretion. Since type 2 diabetes (T2D) is characterized by beta cell dysfunction, we aimed at evaluating expression levels of miR-124a and miR-375, both involved in the control of beta cell function, in human pancreatic islets obtained from T2D and from age-matched non-diabetic organ donors.

Methods

We analyzed miR-124a and miR-375 expression by real-time qRT-PCR in human pancreatic islets and evaluated the potential role of miR-124a by overexpressing or silencing such miRNA in MIN6 pseudoislets.

Results

We identified a major miR-124a hyperexpression in T2D human pancreatic islets with no differential expression of miR-375. Of note, miR-124a overexpression in MIN6 pseudoislets resulted in an impaired glucose-induced insulin secretion. In addition, miR-124a silencing in MIN6 pseudoislets resulted in increased expression of predicted target genes (Mtpn, Foxa2, Flot2, Akt3, Sirt1 and NeuroD1) involved in beta cell function. For Mtpn and Foxa2, we further demonstrated the actual binding of miR-124a to their 3UTR sequences by luciferase assay.

Conclusions

We uncovered a major hyperexpression of miR-124a in T2D islets, whose silencing resulted in increased expression of target genes of major importance for beta cell function and whose overexpression impaired glucose-stimulated insulin secretion, leading to the hypothesis that an altered miR-124a expression may contribute to beta cell dysfunction in type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weir GC, Bonner-Weir S (2011) Sleeping islets and the relationship between beta-cell mass and function. Diabetes 60:2018–2019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kahn SE (2003) The relative contributions of insulin resistance and beta cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19

    Article  CAS  PubMed  Google Scholar 

  3. Maris M, Ferreira GB, D’Hertog W, Cnop M, Waelkens E, Overbergh L, Mathieu C (2010) High glucose induces dysfunction in insulin secretory cells by different pathways: a proteomic approach. J Proteome Res 9:6274–6287

    Article  CAS  PubMed  Google Scholar 

  4. Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56:2938–2945

    Article  CAS  PubMed  Google Scholar 

  5. Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9:109–113

    Article  CAS  PubMed  Google Scholar 

  6. Fernandez-Valverde SL, Taft RJ, Mattick JS (2011) MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes 60:1825–1831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, Nir T, Lennox KA, Behlke MA, Dor Y et al (2011) miRNAs control insulin content in pancreatic beta cells via downregulation of transcriptional repressors. EMBO J 30:835–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kalis M, Bolmeson C, Esguerra JL, Gupta S, Edlund A, Tormo-Badia N, Speidel D, Holmberg D, Mayans S, Khoo NK et al (2011) Beta-cell specific deletion of dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One 6:e29166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Esguerra JL, Bolmeson C, Cilio CM, Eliasson L (2011) Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 6:e18613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, Jeyaseelan K (2011) MicroRNA-144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6:e22839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR, Prentki M, Regazzi R (2013) Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 56(10):2203–2212

    Article  CAS  PubMed  Google Scholar 

  12. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Mecdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  CAS  PubMed  Google Scholar 

  13. Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD (2009) The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4:e5033

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol. Chem 389:305–312

    Article  CAS  PubMed  Google Scholar 

  15. Lee CS, Sund NJ, Vatamaniuk MZ, Matschinsky FM, Stoffers DA, Kaestner KH (2002) FoxA2 controls Pdx1 gene expression in pancreatic beta-cells in vivo. Diabetes 51:2546–2551

    Article  CAS  PubMed  Google Scholar 

  16. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Obberghen Van (2007) MicroRNA-124a regulates FoxA2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588

    Article  CAS  PubMed  Google Scholar 

  17. Folli F, Okada T, Perego C, Gunton J, Liew CW (2011) Altered insulin receptor signalling and β-cell cycle dynamics in type 2 diabetes mellitus. PLoS One 6:e28050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Marchetti P, Lupi R, Bugliani M, Kirkpatrick CL, Sebastiani G, Grieco FA, Del Guerra S, D’Aleo V, Piro S, Marselli L, Boggi U, Filipponi F, Tinti L, Salvini L, Wollheim CB, Purrello F, Dotta F (2012) A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55(12):3262–3272

    Article  CAS  PubMed  Google Scholar 

  19. Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T (1990) Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132

    Article  CAS  PubMed  Google Scholar 

  20. Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 90:8392–8396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Marselli L, Dotta F, Piro S, Santangelo C, Masini M (2001) Th2 cytokines have a partial, direct protective effect on the function and survival of isolated human islets exposed to combined proinflammatory and Th1 cytokines. J Clin Endocrinol Metab 86:4974–4978

    Article  CAS  PubMed  Google Scholar 

  22. Masini M, Anello M, Bugliani M, Marselli L, Filipponi F, Boggi U, Purrello F, Occhipinti M, Martino L, Marchetti P, De Tata V (2014) Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet beta cells is associated with preserved ATP/ADP ratio. Diabetes Res Clin Pract 104(1):163–170

    Article  CAS  PubMed  Google Scholar 

  23. Marselli L, Suleiman M, Masini M, Campani D, Bugliani M, Syed F, Martino L, Focosi D, Scatena F, Olimpico F, Filipponi F, Masiello P, Boggi U, Marchetti P (2014) Are we overestimating the loss of beta cells in type 2 diabetes? Diabetologia 57(2):362–365

    Article  CAS  PubMed  Google Scholar 

  24. Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 17:1151–1156

    Article  CAS  PubMed  Google Scholar 

  25. Andrali SS, Sampley ML, Vanderford NL, Ozcan S (2008) Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J 415:1–10

    Article  CAS  PubMed  Google Scholar 

  26. Schultze SM, Jensen J, Hemmings BA, Tschopp O, Niessen M (2011) Promiscuous affairs of PKB/AKT isoforms in metabolism. Arch Physiol Biochem 117:70–77

    Article  CAS  PubMed  Google Scholar 

  27. Wojcik M, Mac-Marcjanek K, Wozniak LA (2009) Physiological and pathophysiological functions of SIRT1. Mini Rev Med Chem 9:386–394

    Article  CAS  PubMed  Google Scholar 

  28. Taoka M, Ichimura T, Wakamiya-Tsuruta A, Kubota Y, Araki T, Obinata T, Isobe T (2003) V-1, a protein expressed transiently during murine cerebellar development, regulates actin polymerization via interaction with capping protein. J Biol Chem 278:5864–5870

    Article  CAS  PubMed  Google Scholar 

  29. Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers ME et al (2010) Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53:1099–1109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106(14):5813–5818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tang X, Muniappan L, Tang G, Ozcan S (2009) Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15:287–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bolmeson C, Esguerra JL, Salehi A, Speidel D, Eliasson L, Cilio CM (2011) Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochem. Biophys Res Commun 404:16–22

    Article  CAS  PubMed  Google Scholar 

  33. Kameswaran V, Bramswig NC, McKenna LB, Penn M, Schug J, Hand NJ, Chen Y, Choi I, Vourekas A, Won KJ, Liu C, Vivek K, Naji A, Friedman JR, Kaestner KH (2014) Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 19(1):135–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tattikota SG, Rathjen T, McAnulty SJ, Wessels HH, Akerman I, van de Bunt M, Hausser J, Esguerra JL, Musahl A, Pandey AK, You X, Chen W, Herrera PL, Johnson PR, O’Carroll D, Eliasson L, Zavolan M, Gloyn AL, Ferrer J, Shalom-Feuerstein R, Aberdam D, Poy MN (2014) Argonaute 2 mediates compensatory expansion of the pancreatic β cell. Cell Metab 19(1):122–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ciccacci C, Di Fusco D, Cacciotti L, Morganti R, D’Amato C, Greco C, Rufini S, Novelli G, Sangiuolo F, Spallone V, Borgiani P (2013) MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol 50(6):867–872

    Article  CAS  PubMed  Google Scholar 

  36. Qi L, Hu Y, Zhan Y, Wang J, Wang BB, Xia HF, Ma X (2012) A SNP site in pri-miR-124 changes mature miR-124 expression but no contribution to Alzheimer’s disease in a Mongolian population. Neurosci Lett 515(1):1–6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the European Union [Collaborative Projects NAIMIT and PEVNET in the Framework Program 7 (FP7)], from the Italian Ministry of Research and from the Tuscany Region. The editorial help of Maddalena Prencipe has been greatly appreciated.

Conflict of interest

Guido Sebastiani, Agnese Po, Evelina Miele, Giuliana Ventriglia, Elena Ceccarelli, Marco Bugliani, Lorella Marselli, Piero Marchetti, Alberto Gulino, Elisabetta Ferretti and Francesco Dotta declare that they have no conflict of interest.

Ethical standard

All human studies have been reviewed by the appropriate ethics committee (Comitato Etico per la Sperimentazione dell’Azienda Ospedaliera Universitaria di Pisa) and have therefore been performed in accordance with the ethical standards.

Human and animal rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent disclosure

Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Sebastiani.

Additional information

Managed by Massimo Federici.

Elisabetta Ferretti and Francesco Dotta both share the senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastiani, G., Po, A., Miele, E. et al. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 52, 523–530 (2015). https://doi.org/10.1007/s00592-014-0675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0675-y

Keywords

Navigation