Skip to main content

Advertisement

Log in

A discovery-phase urine proteomics investigation in type 1 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Diabetes is a chronic metabolic disease which can lead to serious health problems particularly in and to the development of cardiovascular and renal complications. The aim of this study is to possibly identify distinctive molecular features in urine samples which might correlate to the progression and complications of type 1 diabetes. Diabetic patients with normo- and micro-albuminuria have been analyzed and compared to a group of control subjects. Urine proteins of control and type 1 diabetes subjects were investigated in their proteome profiles, using high-resolution two-dimensional gel electrophoresis separation and protein identifications by MALDI–TOF–MS and LC–MS/MS analysis. Proteomics analysis highlighted differential expression of several proteins between control and type 1 diabetes subjects. In particular, five proteins were found to be down-regulated and four proteins up-regulated. Lower protein representations in diabetic subjects were associated with Tamm–Horsfall urinary glycoprotein, apolipoprotein A-I, apolipoprotein E, α2-thiol proteinase inhibitor, and human complement regulatory protein CD59, while higher protein representations were found for α-1-microglobulin, zinc-α2 glycoprotein, α-1B glycoprotein, and retinol-binding protein 4. These differences were maintained comparing control subjects with type 1 diabetes normo-albuminuric and micro-albuminuric subjects. Furthermore, these proteins are correlated to glycosylated hemoglobin and microalbuminuria, confirming their role in diabetic pathology. This study gives new insights on potential molecular mechanisms associated with the complications of type 1 diabetic disease providing evidences of urine proteins potentially exploitable as putative prognostic biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

THP:

Tamm–Horsfall urinary glycoprotein

Apo A-1:

Apolipoprotein A-I

Apo E:

Apolipoprotein E

HMWK:

Kininogen-1 or α2-thiol proteinase inhibitor

CD59:

Human complement regulatory protein CD59

AMBP:

α-1-Microglobulin

ZA2G:

Zinc-α2 glycoprotein

A1BG:

α-1B Glycoprotein

RBP4:

Plasma retinol-binding protein

HbA1c :

Glycosylated hemoglobin

IDDM:

Insulin-dependent diabetes mellitus

NIDDM:

Non-insulin-dependent diabetes mellitus

MALDI–TOF:

Matrix-assisted laser desorption ionization–time of flight

LC–MS/MS:

Liquid chromatography tandem mass spectrometry

DN:

Diabetes nephropathy

T1D:

Type 1 diabetes

2-DE:

Two-dimensional electrophoresis

T2D:

Type 2 diabetes

References

  1. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300

    Article  PubMed  CAS  Google Scholar 

  2. Daneman D (2006) Type 1 diabetes. Lancet 367(9513):847–858. doi:10.1016/S0140-6736(06)68341-4

    Article  PubMed  CAS  Google Scholar 

  3. Colino E, Alvarez MA, Carcavilla A, Alonso M, Ros P, Barrio R (2010) Insulin dose adjustment when changing from multiple daily injections to continuous subcutaneous insulin infusion in the pediatric age group. Acta Diabetol 47(Suppl 1):1–6. doi:10.1007/s00592-009-0103-x

    Article  PubMed  CAS  Google Scholar 

  4. Sahin SB, Cetinkalp S, Ozgen AG, Saygili F, Yilmaz C (2010) The importance of anti-insulin antibody in patients with type 1 diabetes mellitus treated with continuous subcutaneous insulin infusion or multiple daily insulin injections therapy. Acta Diabetol 47(4):325–330. doi:10.1007/s00592-010-0221-5

    Article  PubMed  CAS  Google Scholar 

  5. Monami M, Lamanna C, Marchionni N, Mannucci E (2010) Continuous subcutaneous insulin infusion versus multiple daily insulin injections in type 1 diabetes: a meta-analysis. Acta Diabetol 47(Suppl 1):77–81. doi:10.1007/s00592-009-0132-5

    Article  PubMed  CAS  Google Scholar 

  6. Klupa T, Skupien J, Cyganek K, Katra B, Sieradzki J, Malecki MT (2011) The dual-wave bolus feature in type 1 diabetes adult users of insulin pumps. Acta Diabetol 48(1):11–14. doi:10.1007/s00592-009-0173-9

    Article  PubMed  CAS  Google Scholar 

  7. Raman R, Rani PK, Gnanamoorthy P, Sudhir RR, Kumaramanikavel G, Sharma T (2010) Association of obesity with diabetic retinopathy: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study (SN-DREAMS Report no. 8). Acta Diabetol 47(3):209–215. doi:10.1007/s00592-009-0113-8

    Article  PubMed  Google Scholar 

  8. Tarquini R, Lazzeri C, Pala L, Rotella CM, Gensini GF (2011) The diabetic cardiomyopathy. Acta Diabetol 48(3):173–181. doi:10.1007/s00592-010-0180-x

    Article  PubMed  Google Scholar 

  9. May O, Arildsen H (2011) Long-term predictive power of simple function tests for cardiovascular autonomic neuropathy in diabetes: a population-based study. Acta Diabetol 48(4):311–316. doi:10.1007/s00592-011-0283-z

    Article  PubMed  CAS  Google Scholar 

  10. Chen SJ, Chou P, Lee AF, Lee FL, Hsu WM, Liu JH, Tung TH (2010) Microaneurysm number and distribution in the macula of Chinese type 2 diabetics with early diabetic retinopathy: a population-based study in Kinmen, Taiwan. Acta Diabetol 47(1):35–41. doi:10.1007/s00592-009-0095-6

    Article  CAS  Google Scholar 

  11. Gianiorio FE, Casu M, Patrone V, Egan CG, Murialdo G (2011) Effect of pioglitazone on cardiac sympathovagal modulation in patients with type 2 diabetes. Acta Diabetol 48(4):283–290. doi:10.1007/s00592-011-0258-0

    Article  PubMed  CAS  Google Scholar 

  12. Greco D, Gambina F, Maggio F (2009) Ophthalmoplegia in diabetes mellitus: a retrospective study. Acta Diabetol 46(1):23–26. doi:10.1007/s00592-008-0053-8

    Article  PubMed  Google Scholar 

  13. Atkins RC, Zimmet P (2010) Diabetic kidney disease: act now or pay later. Acta Diabetol 47(1):1–4. doi:10.1007/s00592-010-0175-7

    Article  PubMed  Google Scholar 

  14. Rossing P, de Zeeuw D (2011) Need for better diabetes treatment for improved renal outcome. Kidney Int Suppl 120:S28–S32. doi:10.1038/ki.2010.513

    Article  PubMed  CAS  Google Scholar 

  15. Karlberg C, Falk C, Green A, Sjolie AK, Grauslund J (2011) Proliferative retinopathy predicts nephropathy: a 25-year follow-up study of type 1 diabetic patients. Acta Diabetol. doi:10.1007/s00592-011-0304-y

    PubMed  Google Scholar 

  16. Guo L, Cheng Y, Wang X, Pan Q, Li H, Zhang L, Wang Y (2010) Association between microalbuminuria and cardiovascular disease in type 2 diabetes mellitus of the Beijing Han nationality. Acta Diabetol. doi:10.1007/s00592-010-0205-5

    Google Scholar 

  17. Millioni R, Iori E, Puricelli L, Arrigoni G, Vedovato M, Trevisan R, James P, Tiengo A, Tessari P (2008) Abnormal cytoskeletal protein expression in cultured skin fibroblasts from type 1 diabetes mellitus patients with nephropathy: a proteomic approach. Proteomics Clin Appl 2(4):492–503

    Article  PubMed  CAS  Google Scholar 

  18. Pan HZ, Zhang L, Guo MY, Sui H, Li H, Wu WH, Qu NQ, Liang MH, Chang D (2010) The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta Diabetol 47(Suppl 1):71–76. doi:10.1007/s00592-009-0128-1

    Article  PubMed  CAS  Google Scholar 

  19. Jia L, Zhang L, Shao C, Song E, Sun W, Li M, Gao Y (2009) An attempt to understand kidney’s protein handling function by comparing plasma and urine proteomes. PLoS ONE 4(4):e5146

    Article  PubMed  Google Scholar 

  20. Rao PV, Lu X, Standley M, Pattee P, Neelima G, Girisesh G, Dakshinamurthy K, Roberts CT Jr, Nagalla SR (2007) Proteomic identification of urinary biomarkers of diabetic nephropathy. Diabetes Care 30(3):629–637

    Article  PubMed  CAS  Google Scholar 

  21. Thongboonkerd V, Klein J, Jevans A, McLeish K (2004) Urinary proteomics and biomarker discovery for glomerular diseases. Contrib Nephrol 141:292–307

    Article  PubMed  CAS  Google Scholar 

  22. Thongboonkerd V (2004) Proteomics in nephrology: current status and future directions. Am J Nephrol 24(3):360–378

    Article  PubMed  CAS  Google Scholar 

  23. Thongboonkerd V (2005) Proteomic analysis of renal diseases: unraveling the pathophysiology and biomarker discovery. Expert Rev Proteomics 2(3):349–366

    Article  PubMed  CAS  Google Scholar 

  24. Thongboonkerd V, Malasit P (2005) Renal and urinary proteomics: current applications and challenges. Proteomics 5(4):1033–1042

    Article  PubMed  CAS  Google Scholar 

  25. Moon PG, You S, Lee JE, Hwang D, Baek MC (2011) Urinary exosomes and proteomics. Mass Spectrom Rev 30(6):1185–1202. doi:10.1002/mas.20319

    Article  PubMed  CAS  Google Scholar 

  26. Papale M, Di Paolo S, Magistroni R, Lamacchia O, Di Palma AM, De Mattia A, Rocchetti MT, Furci L, Pasquali S, De Cosmo S, Cignarelli M, Gesualdo L (2010) Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care 33(11):2409–2415. doi:10.2337/dc10-0345

    Article  PubMed  CAS  Google Scholar 

  27. Bellei E, Rossi E, Lucchi L, Uggeri S, Albertazzi A, Tomasi A, Iannone A (2008) Proteomic analysis of early urinary biomarkers of renal changes in type 2 diabetic patients. Proteomics Clin Appl 2(4):478–491. doi:10.1002/prca.200780109

    Article  PubMed  CAS  Google Scholar 

  28. Candiano G, Santucci L, Petretto A, Bruschi M, Dimuccio V, Urbani A, Bagnasco S, Ghiggeri GM (2010) 2D-electrophoresis and the urine proteome map: where do we stand? J Proteomics 73(5):829–844. doi:10.1016/j.jprot.2009.12.003

    Article  PubMed  CAS  Google Scholar 

  29. Konvalinka A, Scholey JW, Diamandis EP (2012) Searching for new biomarkers of renal diseases through proteomics. Clin Chem 58(2):353–365. doi:10.1373/clinchem.2011.165969

    Article  PubMed  CAS  Google Scholar 

  30. Zurbig P, Dihazi H, Metzger J, Thongboonkerd V, Vlahou A (2011) Urine proteomics in kidney and urogenital diseases: Moving towards clinical applications. Proteomics Clin Appl 5(5–6):256–268. doi:10.1002/prca.201000133

    Article  PubMed  Google Scholar 

  31. Decramer S, Gonzalez de Peredo A, Breuil B, Mischak H, Monsarrat B, Bascands JL, Schanstra JP (2008) Urine in clinical proteomics. Mol Cell Proteomics 7(10):1850–1862. doi:10.1074/mcp.R800001-MCP200

    Article  PubMed  CAS  Google Scholar 

  32. Merchant ML, Klein JB (2007) Proteomics and diabetic nephropathy. Elsevier, Amsterdam, pp 627–636

    Google Scholar 

  33. Torffvit O, Agardh CD (1993) Tubular secretion of Tamm–Horsfall protein is decreased in type 1 (insulin-dependent) diabetic patients with diabetic nephropathy. Nephron 65(2):227–231

    Article  PubMed  CAS  Google Scholar 

  34. Torffvit O, Agardh CD (1994) Urinary excretion rate of NC1 and Tamm–Horsfall protein in the microalbuminuric type I diabetic patient. J Diabetes Complicat 8(2):77–83

    Article  PubMed  CAS  Google Scholar 

  35. Schlatzer D, Maahs DM, Chance MR, Dazard JE, Li X, Hazlett F, Rewers M, Snell-Bergeon JK (2012) Novel urinary protein biomarkers predicting the development of microalbuminuria and renal function decline in type 1 diabetes. Diabetes Care. doi:10.2337/dc11-1491

    PubMed  Google Scholar 

  36. Holmquist P, Torffvit O (2008) Tubular function in diabetic children assessed by Tamm–Horsfall protein and glutathione S-transferase. Pediatr Nephrol 23(7):1079–1083. doi:10.1007/s00467-008-0770-9

    Article  PubMed  Google Scholar 

  37. Torffvit O, Jørgensen P, Kamper AL, Holstein-Rathlou NH, Leyssac P, Poulsen S, Strandgaard S (2000) Urinary excretion of Tamm–Horsfall protein and epidermal growth factor in chronic nephropathy. Nephron 79(2):167–172

    Article  Google Scholar 

  38. Qin X, Goldfine A, Krumrei N, Grubissich L, Acosta J, Chorev M, Hays AP, Halperin JA (2004) Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes 53(10):2653–2661

    Article  PubMed  CAS  Google Scholar 

  39. Acosta J, Hettinga J, Flückiger R, Krumrei N, Goldfine A, Angarita L, Halperin J (2000) Molecular basis for a link between complement and the vascular complications of diabetes. Proc Nat Acad Sci 97(10):5450

    Article  PubMed  CAS  Google Scholar 

  40. Zhang J, Gerhardinger C, Lorenzi M (2002) Early complement activation and decreased levels of glycosylphosphatidylinositol-anchored complement inhibitors in human and experimental diabetic retinopathy. Diabetes 51(12):3499–3504

    Article  PubMed  CAS  Google Scholar 

  41. Accardo-Palumbo A, Triolo G, Colonna-Romano G, Potestio M, Carbone M, Ferrante A, Giardina E, Caimi G (2000) Glucose-induced loss of glycosyl-phosphatidylinositol-anchored membrane regulators of complement activation (CD59, CD55) by in vitro cultured human umbilical vein endothelial cells. Diabetologia 43(8):1039–1047. doi:10.1007/s001250051487

    Article  PubMed  CAS  Google Scholar 

  42. Ma XW, Chang ZW, Qin MZ, Sun Y, Huang HL, He Y (2009) Decreased expression of complement regulatory proteins, CD55 and CD59, on peripheral blood leucocytes in patients with type 2 diabetes and macrovascular diseases. Chin Med J 122(18):2123–2128

    PubMed  CAS  Google Scholar 

  43. Taskinen MR, Kahri J, Koivisto V, Shepherd J, Packard CJ (1992) Metabolism of HDL apolipoprotein A-I and A-II in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 35(4):347–356

    Article  PubMed  CAS  Google Scholar 

  44. Chen G, Paka L, Kako Y, Singhal P, Duan W, Pillarisetti S (2001) A protective role for kidney apolipoprotein E. J Biol Chem 276(52):49142

    Article  PubMed  CAS  Google Scholar 

  45. Kim HJ, Cho EH, Yoo JH, Kim PK, Shin JS, Kim MR, Kim CW (2007) Proteome analysis of serum from type 2 diabetics with nephropathy. J Proteome Res 6(2):735–743

    Article  PubMed  CAS  Google Scholar 

  46. Liu Y, Cao DJ, Sainz IM, Guo YL, Colman RW (2008) The inhibitory effect of HKa in endothelial cell tube formation is mediated by disrupting the uPA-uPAR complex and inhibiting its signaling and internalization. Am J Physiol Cell Physiol 295(1):C257–C267. doi:10.1152/ajpcell.00569.2007

    Article  PubMed  CAS  Google Scholar 

  47. Rocchetti MT, Centra M, Papale M, Bortone G, Palermo C, Centonze D, Ranieri E, Di Paolo S, Gesualdo L (2008) Urine protein profile of IgA nephropathy patients may predict the response to ACE-inhibitor therapy. Proteomics 8(1):206–216. doi:10.1002/pmic.200700492

    Article  PubMed  CAS  Google Scholar 

  48. Weinberg MS, Azar P, Trebbin WM, Solomon RJ (1985) The role of urinary kininogen in the regulation of kinin generation. Kidney Int 28(6):975–981

    Article  PubMed  CAS  Google Scholar 

  49. Abdullah-Soheimi SS, Lim BK, Hashim OH, Shuib AS (2010) Patients with ovarian carcinoma excrete different altered levels of urine CD59, kininogen-1 and fragments of inter-alpha-trypsin inhibitor heavy chain H4 and albumin. Proteome Sci 8:58. doi:10.1186/1477-5956-8-58

    Article  PubMed  CAS  Google Scholar 

  50. Everaert K, Delanghe J, Vande Wiele C, Hoebeke P, Dierckx RA, Clarysse B, Lameire N, Oosterlinck W (1998) Urinary alpha 1-microglobulin detects uropathy. A prospective study in 483 urological patients. Clinical chemistry and laboratory medicine. CCLM/FESCC 36(5):309–315. doi:10.1515/CCLM.1998.052

  51. Pfleiderer S, Zimmerhackl L, Kinne R, Manz F, Schuler G, Brandis M (1993) Renal proximal and distal tubular function is attenuated in diabetes mellitus type 1 as determined by the renal excretion of α 1-microglobulin and Tamm–Horsfall protein. J Mol Med 71(12):972–977

    CAS  Google Scholar 

  52. Wainai H, Katsukawa F, Takei I, Maruyama H, Kataoka K, Saruta T (1991) Influence of glycemic control and hypertension on urinary microprotein excretion in non-insulin-dependent diabetes mellitus. J Diabetic Complicat 5(2–3):160–161

    Article  CAS  Google Scholar 

  53. Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F (2008) Zinc alpha 2-glycoprotein: a multidisciplinary protein. Mol Cancer Res 6(6):892–906. doi:10.1158/1541-7786.MCR-07-2195

    Article  PubMed  CAS  Google Scholar 

  54. Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S, Tisdale MJ, Trayhurn P (2004) Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Nat Acad Sci USA 101(8):2500–2505

    Article  PubMed  CAS  Google Scholar 

  55. Rolli V, Radosavljevic M, Astier V, Macquin C, Castan-Laurell I, Visentin V, Guigne C, Carpene C, Valet P, Gilfillan S, Bahram S (2007) Lipolysis is altered in MHC class I zinc-alpha(2)-glycoprotein deficient mice. FEBS Lett 581(3):394–400. doi:10.1016/j.febslet.2006.12.047

    Article  PubMed  CAS  Google Scholar 

  56. Agrawal V, Shah A, Rice C, Franklin BA, McCullough PA (2009) Impact of treating the metabolic syndrome on chronic kidney disease. Nat Rev Nephrol 5(9):520–528. doi:10.1038/nrneph.2009.114

    Article  PubMed  CAS  Google Scholar 

  57. Varghese SA, Powell TB, Budisavljevic MN, Oates JC, Raymond JR, Almeida JS, Arthur JM (2007) Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol 18(3):913–922. doi:10.1681/ASN.2006070767

    Article  PubMed  CAS  Google Scholar 

  58. Pesic I, Stefanovic V, Muller GA, Muller CA, Cukuranovic R, Jahn O, Bojanic V, Koziolek M, Dihazi H (2011) Identification and validation of six proteins as marker for endemic nephropathy. J Proteomics 74(10):1994–2007. doi:10.1016/j.jprot.2011.05.020

    Article  PubMed  CAS  Google Scholar 

  59. Riaz S, Alam SS, Srai SK, Skinner V, Riaz A, Akhtar MW (2010) Proteomic identification of human urinary biomarkers in diabetes mellitus type 2. Diabetes Technol Ther 12(12):979–988. doi:10.1089/dia.2010.0078

    Article  PubMed  CAS  Google Scholar 

  60. Lim SC, Liying DQ, Toy WC, Wong M, Yeoh LY, Tan C, Lau D, Subramaniam T, Sum CF (2011) Adipocytokine zinc alpha(2) glycoprotein (ZAG) as a novel urinary biomarker for normo-albuminuric diabetic nephropathy. Diabet Med. doi:10.1111/j.1464-5491.2011.03564.x

    Google Scholar 

  61. Jain S, Rajput A, Kumar Y, Uppuluri N, Arvind AS, Tatu U (2005) Proteomic analysis of urinary protein markers for accurate prediction of diabetic kidney disorder. J Assoc Phys India 53:513–520

    Google Scholar 

  62. Ishioka N, Takahashi N, Putnam FW (1986) Amino acid sequence of human plasma alpha 1B-glycoprotein: homology to the immunoglobulin supergene family. Proc Nat Acad Sci USA 83(8):2363–2367

    Article  PubMed  CAS  Google Scholar 

  63. Araki T, Gejyo F, Takagaki K, Haupt H, Schwick HG, Burgi W, Marti T, Schaller J, Rickli E, Brossmer R et al (1988) Complete amino acid sequence of human plasma Zn-alpha 2-glycoprotein and its homology to histocompatibility antigens. Proc Natl Acad Sci USA 85(3):679–683

    Article  PubMed  CAS  Google Scholar 

  64. Catanese JJ, Kress LF (1992) Isolation from opossum serum of a metalloproteinase inhibitor homologous to human alpha 1B-glycoprotein. Biochemistry 31(2):410–418

    Article  PubMed  CAS  Google Scholar 

  65. Kreunin P, Zhao J, Rosser C, Urquidi V, Lubman DM, Goodison S (2007) Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling. J Proteome Res 6(7):2631–2639. doi:10.1021/pr0700807

    Article  PubMed  CAS  Google Scholar 

  66. Goo YA, Tsai YS, Liu AY, Goodlett DR, Yang CC (2010) Urinary proteomics evaluation in interstitial cystitis/painful bladder syndrome: a pilot study. Int Braz J Urol 36(4):464–478; discussion 478–469, 479

    Google Scholar 

  67. Newcomer ME, Ong DE (2000) Plasma retinol binding protein: structure and function of the prototypic lipocalin. Biochimica et Biophysica Acta 1482(1–2):57–64

    Google Scholar 

  68. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436(7049):356–362. doi:10.1038/nature03711

    Article  PubMed  CAS  Google Scholar 

  69. Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson PA, Smith U, Kahn BB (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354(24):2552–2563. doi:10.1056/NEJMoa054862

    Article  PubMed  CAS  Google Scholar 

  70. Kotnik P, Fischer-Posovszky P, Wabitsch M (2011) RBP4: a controversial adipokine. Eur J Endocrinol 165(5):703–711. doi:10.1530/EJE-11-0431

    Article  PubMed  CAS  Google Scholar 

  71. Christou GA, Tselepis AD, Kiortsis DN (2012) The metabolic role of retinol binding protein 4: an update. Horm Metab Res 44(1):6–14. doi:10.1055/s-0031-1295491

    Google Scholar 

  72. Watts GF, Powell M, Rowe DJ, Shaw KM (1989) Low-molecular-weight proteinuria in insulin-dependent diabetes mellitus: a study of the urinary excretion of beta 2-microglobulin and retinol-binding protein in alkalinized patients with and without microalbuminuria. Diabetes Res 12(1):31–36

    PubMed  CAS  Google Scholar 

  73. Pontuch P, Toserova E, Vozar J, Bulas J, Kratochvilova H (1995) 24-h Ambulatory blood pressure, daytime and nighttime urinary albumin and retinol-binding protein excretion in type I diabetic patients. J Diabetes Complicat 9(4):234–236

    Article  PubMed  CAS  Google Scholar 

  74. Galanti LM, Jamart J, Dell’omo J, Donckier J (1996) Comparison of urinary excretion of albumin, alpha 1-microglobulin and retinol-binding protein in diabetic patients. Diabetes Metab 22(5):324–330

    PubMed  CAS  Google Scholar 

  75. Dubrey SW, Beetham R, Miles J, Noble MI, Rowe R, Leslie RD (1997) Increased urinary albumin and retinol-binding protein in type I diabetes. A study of identical twins. Diabetes Care 20(1):84–89

    Article  PubMed  CAS  Google Scholar 

  76. Shimizu H, Negishi M, Shimomura Y, Mori M (1992) Changes in urinary retinol binding protein excretion and other indices of renal tubular damage in patients with non-insulin dependent diabetes. Diabetes Res Clin Pract 18(3):207–210

    Article  PubMed  CAS  Google Scholar 

  77. Chen CC, Wu JY, Chang CT, Tsai FJ, Wang TY, Liu YM, Tsui HC, Chen RH, Chiou SC (2009) Levels of retinol-binding protein 4 and uric acid in patients with type 2 diabetes mellitus. Metab Clin Exp 58(12):1812–1816. doi:10.1016/j.metabol.2009.06.013

    Google Scholar 

  78. Akbay E, Muslu N, Nayir E, Ozhan O, Kiykim A (2010) Serum retinol binding protein 4 level is related with renal functions in type 2 diabetes. J Endocrinol Invest 33(10):725–729. doi:10.3275/7024

    PubMed  CAS  Google Scholar 

  79. Li ZZ, Lu XZ, Liu JB, Chen L (2010) Serum retinol-binding protein 4 levels in patients with diabetic retinopathy. J Int Med Res 38(1):95–99

    PubMed  Google Scholar 

  80. Lisowska-Myjak B (2010) Serum and urinary biomarkers of acute kidney injury. Blood Purif 29(4):357–365. doi:10.1159/000309421

    Article  PubMed  CAS  Google Scholar 

  81. Varghese SA, Powell TB, Janech MG, Budisavljevic MN, Stanislaus RC, Almeida JS, Arthur JM (2010) Identification of diagnostic urinary biomarkers for acute kidney injury. J Investig Med 58(4):612–620. doi:10.231/JIM.0b013e3181d473e7

    PubMed  CAS  Google Scholar 

  82. Chu CH, Lam HC, Lee JK, Lu CC, Sun CC, Cheng HJ, Wang MC, Chuang MJ (2011) Elevated serum retinol-binding protein 4 concentrations are associated with chronic kidney disease but not with the higher carotid intima-media thickness in type 2 diabetic subjects. Endocr J 58(10):841–847

    Article  PubMed  CAS  Google Scholar 

  83. Salem MA, el-Habashy SA, Saeid OM, el-Tawil MM, Tawfik PH (2002) Urinary excretion of n-acetyl-beta-D-glucosaminidase and retinol binding protein as alternative indicators of nephropathy in patients with type 1 diabetes mellitus. Pediatr Diabetes 3(1):37–41. doi:10.1034/j.1399-5448.2002.30107.x

    Article  PubMed  Google Scholar 

  84. Astorri E, Guglielmi C, Bombardieri M, Alessandri C, Buzzetti R, Maggi D, Valesini G, Pitzalis C, Pozzilli P (2010) Circulating Reg1alpha proteins and autoantibodies to Reg1alpha proteins as biomarkers of beta-cell regeneration and damage in type 1 diabetes. Horm Metab Res 42(13):955–960. doi:10.1055/s-0030-1267206

    Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. Francesco Cucca, Prof. Mario Maioli, for help in collecting the Sardinian type 1 diabetes families and for clinical information. This work was supported by project “ICT SIAI 101 SARDEGEN” (Proteotech srl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Roncada.

Additional information

Communicated by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soggiu, A., Piras, C., Bonizzi, L. et al. A discovery-phase urine proteomics investigation in type 1 diabetes. Acta Diabetol 49, 453–464 (2012). https://doi.org/10.1007/s00592-012-0407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-012-0407-0

Keywords

Navigation