Skip to main content

Advertisement

Log in

Association between protein signals and type 2 diabetes incidence

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Understanding early determinants of type 2 diabetes is essential for refining disease prevention strategies. Proteomic technology may provide a useful approach to identify novel protein patterns potentially related to pathophysiological changes that lead up to diabetes. In this study, we sought to identify protein signals that are associated with diabetes incidence in a middle-aged population. Serum samples from 519 participants in a nested case–control selection (167 cases and 352 age-, sex- and BMI-matched normoglycemic control subjects, median follow-up 14.0 years) within the Whitehall-II cohort were analyzed by linear matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Nine protein peaks were found to be associated with incident diabetes. Rate ratios for high peak intensity ranged between 0.4 (95% CI, 0.2–0.8) and 4.0 (95% CI, 1.7–9.2) and were robust to adjustment for main potential confounders, including obesity, lipids and C-reactive protein. The proteins associated with these peaks may reflect diabetes pathogenesis. Our study exemplifies the utility of an approach that combines proteomic and epidemiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346

    Google Scholar 

  2. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805

    Article  PubMed  CAS  Google Scholar 

  3. Cusi K (2010) The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes. Curr Diab Rep 10:306–315

    Article  PubMed  CAS  Google Scholar 

  4. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801

    Article  PubMed  CAS  Google Scholar 

  5. Kolb H, Mandrup-Poulsen T (2005) An immune origin of type 2 diabetes? Diabetologia 48:1038–1050

    Article  PubMed  CAS  Google Scholar 

  6. Kolberg JA, Jorgensen T, Gerwien RW, Hamren S, McKenna MP, Moler E, Rowe MW, Urdea MS, Xu XM, Hansen T, Pedersen O, Borch-Johnsen K (2009) Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 32:1207–1212

    Article  PubMed  Google Scholar 

  7. Salomaa V, Havulinna A, Saarela O, Zeller T, Jousilahti P, Jula A, Muenzel T, Aromaa A, Evans A, Kuulasmaa K, Blankenberg S (2010) Thirty-one novel biomarkers as predictors for clinically incident diabetes. PLoS One 5:e10100

    Google Scholar 

  8. Albrethsen J (2011) The first decade of MALDI protein profiling: a lesson in translational biomarker research. J Proteomics 74:765–773

    Article  PubMed  CAS  Google Scholar 

  9. Albrethsen J (2007) Reproducibility in protein profiling by MALDI-TOF mass spectrometry. Clin Chem 53:852–858

    Article  PubMed  CAS  Google Scholar 

  10. Ransohoff DF (2005) Lessons from controversy: ovarian cancer screening and serum proteomics. J Natl Cancer Inst 97:315–319

    Article  PubMed  CAS  Google Scholar 

  11. Marmot M, Brunner E (2005) Cohort profile: the Whitehall II study. Int J Epidemiol 34:251–256

    Article  PubMed  Google Scholar 

  12. Herder C, Brunner EJ, Rathmann W, Strassburger K, Tabák AG, Schloot NC, Witte DR (2009) Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes Care 32:421–423

    Article  PubMed  Google Scholar 

  13. World Health Organization (1999) Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO Consultation, Part 1: Diagnosis and classification of diabetes mellitus. Geneva, World Health Organisation

  14. Brunner EJ, Marmot MG, Nanchahal K, Shipley MJ, Stansfeld SA, Juneja M, Alberti KG (1997) Social inequality in coronary risk: central obesity and the metabolic syndrome. Evidence from the Whitehall II study. Diabetologia 40:1341–1349

    Article  PubMed  CAS  Google Scholar 

  15. Tabák AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR (2009) Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373:2215–2221

    Article  PubMed  Google Scholar 

  16. Hansen HG, Overgaard J, Lajer M, Hubalek F, Højrup P, Pedersen L, Tarnow L, Rossing P, Pociot F, McGuire JN (2010) Finding diabetic nephropathy biomarkers in the plasma peptidome by high-throughput magnetic bead processing and MALDI-TOF-MS analysis. Proteomics Clin Appl 4:697–705

    Article  PubMed  CAS  Google Scholar 

  17. Mantini D, Petrucci F, Pieragostino D, Del-Boccio P, Di-Nicola M, Di-Ilio C, Federici G, Sacchetta P, Comani S, Urbani A (2007) LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from noise. BMC Bioinformatics 8:101

    Google Scholar 

  18. Breiman L (2001) Random forests. Machine Learning 45:5–32

    Article  Google Scholar 

  19. Breiman L, Friedman JH, Olshen R, Stone CJ (1984) Classification and regression trees, Wadsworth, California

  20. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284

    Article  PubMed  CAS  Google Scholar 

  21. Suhre K, Meisinger C, Doring A, Altmaier E, Belcredi P, Gieger C, Chang D, Milburn MV, Gall WE, Weinberger KM, Mewes HW, Hrabe de Angelis M, Wichmann HE, Kronenberg F, Adamski J, Illig T (2010) Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One 5:e13953

    Google Scholar 

  22. Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE (2009) Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 32:1678–1683

    Article  PubMed  CAS  Google Scholar 

  23. Lewis GD, Asnani A, Gerszten RE (2008) Application of metabolomics to cardiovascular biomarker and pathway discovery. J Am Coll Cardiol 52:117–123

    Article  PubMed  CAS  Google Scholar 

  24. Sundsten T, Ostenson CG, Bergsten P (2008) Serum protein patterns in newly diagnosed type 2 diabetes mellitus–influence of diabetic environment and family history of diabetes. Diabetes Metab Res Rev 24:148–154

    Article  PubMed  CAS  Google Scholar 

  25. Fung ET (2010) A recipe for proteomics diagnostic test development: the OVA1 test, from biomarker discovery to FDA clearance. Clin Chem 56:327–329

    Article  PubMed  CAS  Google Scholar 

  26. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  PubMed  Google Scholar 

  27. Hu J, Coombes KR, Morris JS, Baggerly KA (2005) The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Brief Funct Genomic Proteomic 3:322–331

    Article  PubMed  CAS  Google Scholar 

  28. De-Bock M, de-Seny D, Meuwis MA, Chapelle JP, Louis E, Malaise M, Merville MP, Fillet M (2010) Challenges for biomarker discovery in body fluids using SELDI-TOF-MS. J Biomed Biotechnol 2010, Art no 906082. doi:10.1155/2010/906082

  29. Villar-Garea A, Griese M, Imhof A (2007) Biomarker discovery from body fluids using mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 849:105–114

    Article  CAS  Google Scholar 

  30. Pieragostino D, Petrucci F, Del-Boccio P, Mantini D, Lugaresi A, Tiberio S, Onofrj M, Gambi D, Sacchetta P, Di-Ilio C, Federici G, Urbani A (2010) Pre-analytical factors in clinical proteomics investigations: impact of ex vivo protein modifications for multiple sclerosis biomarker discovery. J Proteomics 73:579–592

    Article  PubMed  CAS  Google Scholar 

  31. Szajli E, Fehér T, Medzihradszky KF (2008) Investigating the quantitative nature of MALDI-TOF MS. Mol Cell Proteomics 7:2410–2418

    Article  PubMed  CAS  Google Scholar 

  32. Ekblad L, Baldetorp B, Fernö M, Olsson H, Bratt C (2007) In-source decay causes artifacts in SELDI-TOF MS spectra. J Proteome Res 6:1609–1614

    Article  PubMed  CAS  Google Scholar 

  33. Parker CE, Pearson TW, Anderson NL, Borchers CH (2010) Mass-spectrometry-based clinical proteomics–a review and prospective. Analyst 135:1830–1838

    Article  PubMed  CAS  Google Scholar 

  34. Gonzalez-Recio O, Forni S (2011) Genome-wide prediction of discrete traits using bayesian regressions and machine learning. Genet Select Evol 43:7

    Article  Google Scholar 

  35. Wu B, Abbott T, Fishman D, McMurray W, Mor G, Stone K, Ward D, Williams K, Zhao H (2003) Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19:1636–1643

    Article  PubMed  CAS  Google Scholar 

  36. Ziegler A, DeStefano AL, Konig IR (2007) Data mining, neural nets, trees—problems 2 and 3 of genetic analysis workshop 15. Genet Epidemiol 31:S51–S60

    Article  PubMed  Google Scholar 

  37. Díaz-Uriarte R, Alvarez de Andrés (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7:3

  38. Fan Y, Murphy TB, Byrne JC, Brennan L, Fitzpatrick JM, Watson RW (2011) Applying random forests to identify biomarker panels in serum 2D-DIGE data for the detection and staging of prostate cancer. J Proteome Res 10:1361–1373

    Article  PubMed  CAS  Google Scholar 

  39. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  40. Leighton B, Foot EA (1995) The role of the sensory peptide calcitonin-gene-related peptide(s) in skeletal muscle carbohydrate metabolism: effects of capsaicin and resiniferatoxin. Biochem J 307:707–712

    PubMed  CAS  Google Scholar 

  41. Muff R, Born W, Fischer JA (1995) Calcitonin, calcitonin gene-related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur J Endocrinol 133:17–20

    Article  PubMed  CAS  Google Scholar 

  42. Slezak LA, Andersen DK (2001) Pancreatic resection: effects on glucose metabolism. World J Surg 25:452–460

    Article  PubMed  CAS  Google Scholar 

  43. Breland UM, Michelsen AE, Skjelland M, Folkersen L, Krohg-Sørensen K, Russell D, Ueland T, Yndestad A, Paulsson-Berne G, Damås JK, Oie E, Hansson GK, Halvorsen B, Aukrust P (2010) Raised MCP-4 levels in symptomatic carotid atherosclerosis: an inflammatory link between platelet and monocyte activation. Cardiovasc Res 86:265–273

    Article  PubMed  CAS  Google Scholar 

  44. Béliard S, Nogueira JP, Maraninchi M, Lairon D, Nicolay A, Giral P, Portugal H, Vialettes B, Valéro R (2009) Parallel increase of plasma apoproteins C-II and C-III in Type 2 diabetic patients. Diabet Med 26:736–739

    Article  PubMed  Google Scholar 

  45. Sørensen LB, Flint A, Raben A, Hartmann B, Holst JJ, Astrup A (2003) No effect of physiological concentrations of glucagon-like peptide-2 on appetite and energy intake in normal weight subjects. Int J Obes Relat Metab Disord 27:450–456

    Article  PubMed  Google Scholar 

  46. Meier JJ, Nauck MA, Pott A, Heinze K, Goetze O, Bulut K, Schmidt WE, Gallwitz B, Holst JJ (2006) Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology 130:44–54

    Article  PubMed  CAS  Google Scholar 

  47. Yu R, Kim CS, Kawada T, Kwon TW, Lim TH, Kim YW, Kwon BS (2004) Involvement of leukotactin-1, a novel CC chemokine, in human atherosclerosis. Atherosclerosis 174:35–42

    Article  PubMed  CAS  Google Scholar 

  48. Reape TJ, Groot PH (1999) Chemokines and atherosclerosis. Atherosclerosis 147:213–225

    Article  PubMed  CAS  Google Scholar 

  49. Onat A, Hergenç G, Ayhan E, Uğur M, Kaya H, Tuncer M, Can G (2009) Serum apolipoprotein C-III in high-density lipoprotein: a key diabetogenic risk factor in Turks. Diabet Med 26:981–988

    Article  PubMed  CAS  Google Scholar 

  50. Wang Z, Yip C, Ying Y, Wang J, Meng XY, Lomas L, Yip TT, Fung ET (2004) Mass spectrometric analysis of protein markers for ovarian cancer. Clin Chem 50:1939–1942

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Whitehall II study is supported by the Medical Research Council, the British Heart Foundation, the US National Institutes of Health (R01HL36310, R01AG013196, R01AG034454).

Conflict of interest

TMJ, DRW and DV are employed by the Steno Diabetes Center A/S, a research hospital working in the Danish National Health Service and owned by Novo Nordisk A/S. TMJ, DRW and DV hold shares in Novo Nordisk Inc. Remaining authors declare no duality of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troels Mygind Jensen.

Appendix

Appendix

See Table 4

Table 4 Baseline characteristics of participants with and without MALDI-TOF spectra

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, T.M., Witte, D.R., Pieragostino, D. et al. Association between protein signals and type 2 diabetes incidence. Acta Diabetol 50, 697–704 (2013). https://doi.org/10.1007/s00592-012-0376-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-012-0376-3

Keywords

Navigation