Skip to main content

Advertisement

Log in

Quantitative assessment of the variation in IGF2BP2 gene and type 2 diabetes risk

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Insulin-like growth factor 2 mRNA-binding protein 2 (IFG2BP2) belongs to an mRNA-binding protein family involved in the development and stimulation of insulin action, which has attracted considerable attention as a candidate gene for type 2 diabetes (T2D) since it was first identified through genome-wide association approach. The relationship between IFG2BP2 and T2D has been reported in various ethnic groups; however, these studies have yielded contradictory results. To investigate this inconsistency, we performed a meta-analysis of 35 studies involving a total of 175,965 subjects for two wildly studied polymorphisms (rs4402960 and rs1470579) of the IFG2BP2 to evaluate the effect of IFG2BP2 on genetic susceptibility for T2D. An overall random-effects per-allele OR of 1.13 (95% CI: 1.12–1.15; P < 10−5) and 1.09 (95% CI: 1.07–1.12; P < 10−5) was found for the two variants, respectively. Significant results were also observed using dominant or recessive genetic model. No significant results between study heterogeneity were found in most of the comparison. In the subgroup analysis by ethnicity, sample size, diagnostic criterion and mean age and BMI of cases, significantly increased risks were found for these polymorphisms in almost all genetic models. This meta-analysis demonstrated that these two common polymorphisms is a risk factor for developing T2D, but these associations vary in different ethnic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Tilburg J, van Haeften TW, Pearson P, Wijmenga C (2001) Defining the genetic contribution of type 2 diabetes mellitus. J Med Genet 38:569–578

    Article  PubMed  Google Scholar 

  2. Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC (1999) A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 19:1262–1270

    PubMed  CAS  Google Scholar 

  3. Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, Nijpels G, Heine RJ et al (2008) Variants of cdkal1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 51:1659–1663

    Article  PubMed  CAS  Google Scholar 

  4. Stroup DF, Berlin JA, Morton SC, MOOSE group et al (2000) Meta-analysis of observational studies in epidemiology, a proposal for reporting. JAMA 283:2008–2012

    Article  PubMed  CAS  Google Scholar 

  5. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  6. Woolf B (1955) On estimating the relation between blood group and disease. Ann Hum Genet 19:251–253

    Article  PubMed  CAS  Google Scholar 

  7. Wen Y, Lu P, Dai L (2010) Association between resistin gene-420 C/G polymorphism and the risk of type 2 diabetes mellitus: a meta-analysis. Acta Diabetol doi:10.1007/s00592-010-0247-8

  8. Thompson SG, Sharp SJ (1999) Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 18:2693–2708

    Article  PubMed  CAS  Google Scholar 

  9. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  PubMed  CAS  Google Scholar 

  10. Wagner M, Kunsch S, Duerschmied D, Beil M, Adler G, Mueller F, Gress TM (2003) Transgenic overexpression of the oncofetal RNA binding protein KOC leads to remodeling of the exocrine pancreas. Gastroenterology 124:1901–1914

    Article  PubMed  CAS  Google Scholar 

  11. Spagnoli FM, Brivanlou AH (2006) The RNA-binding protein, Vg1RBP, is required for pancreatic fate specification. Dev Biol 292:442–456

    Article  PubMed  CAS  Google Scholar 

  12. Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, Nijpels G, Heine RJ, Maassen JA, Machicao F, Schafer SA, Haring HU et al (2008) Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 51:1659–1663

    Article  PubMed  CAS  Google Scholar 

  13. Palmer ND, Goodarzi MO, Langefeld CD, Ziegler J, Norris JM, Haffner SM, Bryer-Ash M, Bergman RN, Wagenknecht LE, Taylor KD et al (2008) Quantitative trait analysis of type 2 diabetes susceptibility loci identified from whole genome association studies in the insulin resistance atherosclerosis family study. Diabetes 57:1093–1100

    Article  PubMed  CAS  Google Scholar 

  14. Ruchat SM, Elks CE, Loos RJ, Vohl MC, Weisnagel SJ, Rankinen T, Bouchard C, Perusse L (2008) Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies. Acta Diabetologia 46:217–226

    Article  Google Scholar 

  15. Christiansen J, Kolte AM, Hansen TO, Nielsen FC (2009) Igf2 mrna-binding protein 2: Biological function and putative role in type 2 diabetes. J Mol Endocrinol 43:187–195

    Article  PubMed  CAS  Google Scholar 

  16. Doria A, Patti ME, Kahn CR (2008) The emerging genetic architecture of type 2 diabetes. Cell Metab 8:186–200

    Article  PubMed  CAS  Google Scholar 

  17. Rees SD, Hydrie MZ, Shera AS et al (2011) Replication of 13 genome-wide association (GWA)-validated risk variants for type 2 diabetes in Pakistani populations. Diabetologia 54:1368–1374

    Article  PubMed  CAS  Google Scholar 

  18. Rodriguez S, Eiriksdottir G, Gaunt TR, Harris TB, Launer LJ, Gudnason V, Day IN (2010) IGF2BP1, IGF2BP2 and IGF2BP3 genotype, haplotype and genetic model studies in metabolic syndrome traits and diabetes. Growth Horm IGF Res 20:310–318

    Article  PubMed  CAS  Google Scholar 

  19. Shu XO, Long J, Cai Q et al (2010) Identification of new genetic risk variants for type 2 diabetes. PLoS Genet 6:e1001127

    Article  PubMed  Google Scholar 

  20. Chauhan G, Spurgeon CJ et al (2010) Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2 and CDKAL1 on the risk of type 2 diabetes in 5164 Indians. Diabetes 59:2068–2074

    Article  PubMed  CAS  Google Scholar 

  21. Tan JT, Ng DP, Nurbaya S, Seielstad M, Tai ES et al (2010) Polymorphisms identified through genome-wide association studies and their associations with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. J Clin Endocrinol Metab 95:390–397

    Article  PubMed  CAS  Google Scholar 

  22. Yamauchi T, Hara K, Maeda S et al (2010) A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A–C2CD4B. Nat Genet 42:864–868

    Article  PubMed  CAS  Google Scholar 

  23. Lin Y, Li P, Cai L et al (2010) Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population. BMC Med Genet 11:97

    Article  PubMed  Google Scholar 

  24. Wen J, Rönn T, Olsson A et al (2010) Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One 5:e9153

    Article  PubMed  Google Scholar 

  25. Huang Q, Yin JY, Dai XP et al (2010) IGF2BP2 variations influence repaglinide response and risk of type 2 diabetes in Chinese population. Acta Pharmacol Sin 31:709–717

    Article  PubMed  CAS  Google Scholar 

  26. Han X, Luo Y, Ren Q et al (2010) Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med Genet 11:81

    Article  PubMed  Google Scholar 

  27. Xu M, Bi Y, Xu Y et al (2010) Combined effects of 19 common variations on type 2 diabetes in Chinese: results from two community-based studies. PLoS One 5:e14022

    Article  PubMed  Google Scholar 

  28. Tabara Y, Osawa H, Kawamoto R, Onuma H, Shimizu I, Miki T, Kohara K, Makino H (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 58:493–498

    Article  PubMed  CAS  Google Scholar 

  29. Hu C, Zhang R, Wang C et al (2009) PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 4:e7643

    Article  PubMed  Google Scholar 

  30. Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T et al (2009) Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 58:1690–1699

    Article  PubMed  CAS  Google Scholar 

  31. Wu Y, Li H, Loos RJ, Yu Z, Ye X, Chen L, Pan A, Hu FB, Lin X (2008) Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes 57:2834–2842

    Article  PubMed  CAS  Google Scholar 

  32. Sanghera DK, Ortega L, Han S, Singh J, Ralhan SK, Wander GS, Mehra NK et al (2008) Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med Genet 9:59

    Article  PubMed  Google Scholar 

  33. Rong R, Hanson RL, Ortiz D, Wiedrich C, Kobes S, Knowler WC, Bogardus C, Baier LJ (2009) Association analysis of variation in/near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians. Diabetes 58:478–488

    Article  PubMed  CAS  Google Scholar 

  34. Bronstein M, Pisanté A, Yakir B, Darvasi A (2008) Type 2 diabetes susceptibility loci in the Ashkenazi Jewish population. Hum Genet 124:101–104

    Article  PubMed  CAS  Google Scholar 

  35. Omori S, Tanaka Y, Takahashi A et al (2008) Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57:791–795

    Article  PubMed  CAS  Google Scholar 

  36. Lee YH, Kang ES, Kim SH, Han SJ, Kim CH, Kim HJ, Ahn CW, Cha BS, Nam M, Nam CM, Lee HC (2008) Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet 53:991–998

    Article  PubMed  CAS  Google Scholar 

  37. Horikawa Y, Miyake K, Yasuda K, Enya M, Hirota Y et al (2008) Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan. J Clin Endocrinol Metab 93:3136–3141

    Article  PubMed  CAS  Google Scholar 

  38. Ng MC, Park KS, Oh B, Tam CH, Cho YM et al (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6, 719 Asians. Diabetes 57:2226–2233

    Article  PubMed  CAS  Google Scholar 

  39. Lewis JP, Palmer ND, Hicks PJ, Sale MM, Langefeld CD, Freedman BI, Divers J, Bowden DW (2008) Association analysis in african americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies. Diabetes 57:2220–2225

    Article  PubMed  CAS  Google Scholar 

  40. Lyssenko V, Jonsson A, Almgren P, Pulizzi N et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232

    Article  PubMed  CAS  Google Scholar 

  41. van Hoek M, Dehghan A, Witteman JC et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128

    Article  PubMed  Google Scholar 

  42. Herder C, Rathmann W, Strassburger K et al (2008) Variants of the PPARG, IGF2BP2, CDKAL1, HHEX, and TCF7L2 genes confer risk of type 2 diabetes independently of BMI in the German KORA studies. Horm Metab Res 40:722–726

    Article  PubMed  CAS  Google Scholar 

  43. Liu Y, Yu L, Zhang D et al (2008) Positive association between variations in CDKAL1 and type 2 diabetes in Han Chinese individuals. Diabetologia 51:2134–2137

    Article  PubMed  CAS  Google Scholar 

  44. Duesing K, Fatemifar G, Charpentier G et al (2008) Evaluation of the association of IGF2BP2 variants with type 2 diabetes in French Caucasians. Diabetes 57:1992–1996

    Article  PubMed  CAS  Google Scholar 

  45. Takeuchi F, Ochiai Y, Serizawa M et al (2008) Search for type 2 diabetes susceptibility genes on chromosomes 1q, 3q and 12q. J Hum Genet 53:314–324

    Article  PubMed  CAS  Google Scholar 

  46. Cauchi S, Meyre D, Durand E (2008) Post genome-wide association studies of novel genes associated with type 2 diabetes show gene–gene interaction and high predictive value. PLoS One 3:e2031

    Article  PubMed  Google Scholar 

  47. Grarup N, Rose CS, Andersson EA et al (2007) Studies of association of variants near the HHEX, CDKN2A/B and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10, 705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 56:3105–3111

    Article  PubMed  CAS  Google Scholar 

  48. Horikoshi M, Hara K, Ito C, Shojima N, Nagai R, Ueki K, Froguel P, Kadowaki T (2007) Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50:2461–2466

    Article  PubMed  CAS  Google Scholar 

  49. Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336

    Article  PubMed  CAS  Google Scholar 

  50. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341

    Article  PubMed  CAS  Google Scholar 

  51. Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  PubMed  CAS  Google Scholar 

  52. Baier LJ, Hanson RL (2004) Genetic studies of the etiology of type 2 diabetes in Pima Indians: hunting for pieces to a complicated puzzle. Diabetes 53:1181–1186

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwen Lu or Hao Xu.

Additional information

Jie Wu and Junjie Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Wu, J., Zhou, Y. et al. Quantitative assessment of the variation in IGF2BP2 gene and type 2 diabetes risk. Acta Diabetol 49 (Suppl 1), 87–97 (2012). https://doi.org/10.1007/s00592-011-0336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0336-3

Keywords

Navigation