Skip to main content

Advertisement

Log in

Kidney function and retinol status in type 2 diabetes mellitus patients

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Kidneys play an important role in retinol turnover. We postulated that retinol homeostasis is disturbed in diabetic nephropathy. The aim of this research was to study the effect of kidney impairment on urinary excretion and on serum concentrations of retinol in type 2 diabetes mellitus patients. For this purpose, 41 type 2 diabetes patients and 9 sex -and age-matched healthy subjects were enrolled. Serum and urinary retinol and retinol-binding protein (RBP) were assessed by high-pressure liquid chromatography and enzyme-linked immunosorbent assay, respectively. The study showed that 17 out of 41 diabetic patients (41.5%) and none of the controls excreted retinol in urine (P < 0.02). Retinol excretion in the urine in these patients was 1.5-fold more prevalent than hypercreatininemia. Urinary retinol significantly correlated with clinically diagnosed nephropathy (P = 0.02). All but one of the patients with hypercreatininemia excreted retinol in the urine. Serum retinol and RBP in patients with hypercreatininemia were higher than in controls (P < 0.002). Values of urinary retinol, unlike urinary RBP, albumin and total protein, did not overlap between patients and controls. Our results indicate that (i) urinary retinol is a specific sign of tubular damage in type 2 diabetic patients and (ii) urinary retinol enables a more clear-cut identification of proximal tubule dysfunction in type 2 diabetes patients than urinary RBP or albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkins RC, Zimmet P (2010) Diabetic kidney disease: act now or pay later. Acta Diabetol 47:1–4

    Article  PubMed  Google Scholar 

  2. Deferrari G, Repetto M, Calvi C, Ciabattoni M, Rossi C, Robaudo C (1998) Diabetic nephropathy: from micro- to macroalbuminuria. Nephrol Dial Transpl 13(Suppl 8):S11–S15

    Article  Google Scholar 

  3. Susztak K, Böttinger EP (2006) Diabetic nephropathy: a frontier for personalized medicine. J Am Soc Nephrol 17:361–367

    Article  PubMed  Google Scholar 

  4. Blomhoff R, Green MH, Green JB, Berg T, Norum KR (1991) Vitamin A metabolism: new perspectives on absorption, transport, and storage. Physiol Rev 71:951–990

    PubMed  CAS  Google Scholar 

  5. Scarpioni L, Dall’aglio PP, Poisetti PG, Buzio C (1976) Retinol binding protein in serum and urine of glomerular and tubular nephropathies. Clin Chim Acata 68:107–113

    Article  CAS  Google Scholar 

  6. Usuda N, Kameko M, Kanai M, Nagata T (1983) Immunocytochemical demonstration of retinol-binding protein in the lysosomes of the proximal tubules of the human kidney. Histochemistry 78:487–490

    Article  PubMed  CAS  Google Scholar 

  7. Bernard A, Viau C, Ouled A, Lauwerys R (1987) Competition between low- and high- molecular- weight proteins for renal tubular uptake. Nephron 45:115–118

    Article  PubMed  CAS  Google Scholar 

  8. Leheste JR, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, Aucouturier P, Moskaug JO, Otto A, Christensen EI, Willnow TE (1999) Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 155:1361–1370

    Article  PubMed  CAS  Google Scholar 

  9. Raila J, Willnow TE, Schweigert FJ (2005) Megalin-mediated reuptake of retinol in the kidneys of mice is essential for vitamin A homeostasis. J Nutr 135:2512–2516

    PubMed  CAS  Google Scholar 

  10. Tojo A, Onozato ML, Ha H, Kurihara H, Sakai T, Goto A, Fujita T, Endou H (2001) Reduced albumin reabsorption in the proximal tubule of early-stage diabetic rats. Histochem Cell Biol 116:269–276

    PubMed  CAS  Google Scholar 

  11. Abahusain MA, Wright J, Dickerson JW, de Vol EB (1999) Retinol, alpha-tocopherol and carotenoids in diabetes. Eur J Clin Nutr 53:630–635

    Article  PubMed  CAS  Google Scholar 

  12. Ceriello A, Bortolotti N, Pirisi M, Crescentini A, Tonutti L, Motz E, Russo A, Giacomello R, Stel G, Taboga C (1997) Total plasma antioxidant capacity predicts thrombosis-prone status in NIDDM patients. Diabetes Care 20:1589–1593

    Article  PubMed  CAS  Google Scholar 

  13. Sasaki H, Iwasaki T, Kato S, Tada N (1995) High retinol/retinol-binding protein ratio in noninsulin-dependent diabetes mellitus. Am J Med Sci 310:177–182

    Article  PubMed  CAS  Google Scholar 

  14. Krempf M, Ranganathan S, Ritz P, Morin P, Charbonnel B (1991) Plasma vitamin A and E in type 1 (insulin-dependent) and type 2 (non-insulin-dependent) adult diabetic patients. Int J Vitam Nutr Res 61:38–42

    PubMed  CAS  Google Scholar 

  15. Gavrilov V, Yermiahu T, Gorodischer R (2006) Renal pathology and retinol status in multiple myeloma patients. Kidney Int 69:173–177

    Article  PubMed  CAS  Google Scholar 

  16. De Leenheer AP, De Bevere VO, De Ruyter MG, Claeys AE (1979) Simultaneous determination of retinol and alpha-tocopherol in human serum by high-performance liquid chromatography. J Chromatogr 162:408–413

    Article  PubMed  Google Scholar 

  17. Stephensen CB, Alvarez JO, Kohatsu J, Hardmeier R, Kennedy JI Jr, Gammon RB Jr (1994) Vitamin A is excreted in the urine during acute infection. Am J Clin Nutr 60:388–392

    PubMed  CAS  Google Scholar 

  18. Tomlinson PA, Dalton RN, Turner C, Chantler C (1990) Measurement of beta 2-microglobulin, retinol-binding protein, alpha 1-microglobulin and urine protein 1 in healthy children using enzyme-linked immunosorbent assay. Clin Chim Acta 192:99–106

    Article  PubMed  CAS  Google Scholar 

  19. Institute of Medicine (2001) Food and Nutrition Board, Chapter 4. Vitamin A. In: DRI- dietary reference intakes. National Academy Press, Washington, DC

    Google Scholar 

  20. Dalla Vestra M, Saller A, Bortoloso E, Mauer M, Fioretto P (2000) Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab 26(Suppl 14):S8–S14

    Google Scholar 

  21. Gilbert RE, Cooper ME (1999) The tubulointerstitium in progressive diabetic kidney disease: more than aftermath of glomerular injury? Kidney Int 56:1627–1637

    Article  PubMed  CAS  Google Scholar 

  22. Pan HZ, Zhang L, Guo MY, Sui H, Li H, Wu WH, Qu NQ, Liang MH, Chang D (2010) The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta Daibetol 47(Suppl 1):S71–S76

    Article  Google Scholar 

  23. Fujita T, Ogihara N, Kamura Y, Satomura A, Fuke Y, Shimizu C, Wada Y, Matsumoto K (2010) Interleukin-18 contributes more closely to the progression of diabetic nephropathy than other diabetic complications. Acta Diabetol doi:10.1007/s00592-010-0178-4

  24. Liang D, Liu HF, Yao CW, Liu HY, Huang-Fu CM, Chen HW, Du SH, Chen XW (2007) Effets of interleukin 18 on injury and activation of human proximal tubular epithelial cells. Nephrology 12:53–61

    Article  PubMed  CAS  Google Scholar 

  25. Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, Molitoris BA, Comper WD (2007) The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int 71:504–513

    Article  PubMed  CAS  Google Scholar 

  26. Russo LM, Sandoval RM, Campos SB, Molitoris BA, Comper WD, Brown D (2009) Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol 20:489–494

    Article  PubMed  Google Scholar 

  27. Erikstrup C, Mortensen OH, Nielsen AR, Fischer CP, Plomgaard P, Petersen AM, Krogh-Madsen R, Lindegaard B, Erhardt JG, Ullum H, Benn CS, Pedersen BK (2009) RBP-to-retinol ratio, but not total RBP, is elevated in patients with type 2 diabetes. Diabetes Obes Metab 11:204–212

    Article  PubMed  CAS  Google Scholar 

  28. Ribaya-Mercado JD, Solon FS, Solon MA, Cabal-Barza MA, Perfecto CS, Tang G, Solon JA, Fjeld CR, Russel RM (2000) Bioconversion of plant carotenoids to vitamin A in Filipino school-aged children varies inversely with vitamin A status. Am J Clin Nutr 72:455–465

    PubMed  CAS  Google Scholar 

  29. Usoro CAO, Echeji DC, Usoro IN, Nsonwu AC (2006) Effect of glycaemic control on serum retinol and beta-carotene levels in type 2 diabetics in Calabar, Nigeria. Mal J Nutr 12:55–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Gavrilov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilov, V., Harman-Boehm, I., Amichay, D. et al. Kidney function and retinol status in type 2 diabetes mellitus patients. Acta Diabetol 49, 137–143 (2012). https://doi.org/10.1007/s00592-011-0303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0303-z

Keywords

Navigation