Skip to main content
Log in

The rib cage: a new element in the spinopelvic chain

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

This study analyzes anatomical variations of the thoracic cage (TC) according to spinopelvic alignment, age and gender using stereoradiography in erect position.

Methods

This retrospective multicentric study analyzed computed parameters collected from free-standing position bi-planar radiographs, among healthy subjects. Collected data were: age, gender, pelvic parameters (Pelvic Incidence, Pelvic Tilt (PT) and Sacral Slope), T1-T12 Kyphosis (TK), L1-S1 Lordosis (LL), curvilinear spinal length, global TC parameters (maximum thickness and width, rib cage volume, mean Spinal Penetration Index (SPI)), 1st–10th rib parameters (absolute and relative (to the corresponding vertebra) sagittal angles).

Results

Totally, 256 subjects were included (140 females). Mean age was 34 (range: 8–83). Significant correlations were found between TK and TC thickness (0.3, p < 0.001) and with TC Volume (0.3, p = 0.04), as well as rib absolute sagittal angle for upper and middle ribs (0.2, p = 0.02). Conversely, a −0.3 correlation has been exhibited between SPI and TK. Similar correlations were found with LL. PT significantly correlated with TC thickness (0.4, p = 0.003), SPI (−0.3, p = 0.03), and all rib relative sagittal angles. Among global TC parameters, only thickness and SPI significantly changed after 20 years (respectively, 0.39 and −0.52, p < 0.001). Ribs relative sagittal angle showed negative correlation with age in skeletally mature subjects (p < 0.001).

Conclusion

This study demonstrates the correlation between TC anatomy and spinopelvic parameters, confirming its part of the spinopelvic chain of balance. Indeed, higher spinal curvatures were associated with lower SPI and higher TC thickness, TC volume and rib absolute sagittal angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data will not be deposited.

References

  1. LegayeDuval-BeaupreHecquetMarty JGJC (1998) Pelvic incidence: A fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103. https://doi.org/10.1007/s005860050038

    Article  Google Scholar 

  2. Iyer S, Lenke LG, Nemani VM, et al (2016) Variations in sagittal alignment parameters based on age: a prospective study of asymptomatic volunteers using full-body radiographs. Spine (Phila Pa 1976) 41: 1826–1836. https://doi.org/10.1097/BRS.0000000000001642

  3. Barrey C, Roussouly P, Le Huec J-C et al (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(Suppl 6):S834–S841. https://doi.org/10.1007/s00586-013-3030-z

    Article  PubMed  Google Scholar 

  4. Beyer G, Khalifé M, Lafage R, et al (2020) Pelvic compensation in sagittal malalignment: how much retroversion can the pelvis accommodate? Spine (Phila Pa 1976) 45:E203–E209. https://doi.org/10.1097/BRS.0000000000003228

  5. Liebsch C, Graf N, Appelt K, Wilke H-J (2017) The rib cage stabilizes the human thoracic spine: an in vitro study using stepwise reduction of rib cage structures. PLoS ONE 12:e0178733. https://doi.org/10.1371/journal.pone.0178733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ignasiak D, Dendorfer S, Ferguson SJ (2016) Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading. J Biomech 49:959–966. https://doi.org/10.1016/j.jbiomech.2015.10.010

    Article  PubMed  Google Scholar 

  7. Clavel L, Attali V, Rivals I et al (2020) Decreased respiratory-related postural perturbations at the cervical level under cognitive load. Eur J Appl Physiol 120:1063–1074. https://doi.org/10.1007/s00421-020-04345-1

    Article  PubMed  Google Scholar 

  8. Hodges PW, Gurfinkel VS, Brumagne S et al (2002) Coexistence of stability and mobility in postural control: evidence from postural compensation for respiration. Exp brain Res 144:293–302. https://doi.org/10.1007/s00221-002-1040-x

    Article  CAS  PubMed  Google Scholar 

  9. Dally JF (1908) An inquiry into the physiological mechanism of respiration, with especial reference to the movements of the vertebral column and diaphragm. J Anat Physiol 43:93–114

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Attali V, Clavel L, Rouch P et al (2019) Compensation of respiratory-related postural perturbation is achieved by maintenance of head-to-pelvis alignment in healthy humans. Front Physiol 10:1–10. https://doi.org/10.3389/fphys.2019.00441

    Article  Google Scholar 

  11. Mac-Thiong J-M, Roussouly P, Berthonnaud E, Guigui P (2011) Age- and sex-related variations in sagittal sacropelvic morphology and balance in asymptomatic adults. Eur Spine J 20(Suppl 5):572–577. https://doi.org/10.1007/s00586-011-1923-2

    Article  PubMed  PubMed Central  Google Scholar 

  12. Turner JM, Mead J, Wohl ME (1968) Elasticity of human lungs in relation to age. J Appl Physiol 25:664–671. https://doi.org/10.1152/jappl.1968.25.6.664

    Article  CAS  PubMed  Google Scholar 

  13. Assi A, Karam M, Skalli W et al (2021) A Novel Classification of 3D Rib Cage Deformity in Subjects With Adolescent Idiopathic Scoliosis. Clin spine Surg. https://doi.org/10.1097/BSD.0000000000001139

    Article  PubMed  Google Scholar 

  14. Holcombe SA, Wang SC, Grotberg JB (2017) The effect of age and demographics on rib shape. J Anat 231:229–247. https://doi.org/10.1111/joa.12632

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weaver AA, Schoell SL, Stitzel JD (2014) Morphometric analysis of variation in the ribs with age and sex. J Anat 225:246–261. https://doi.org/10.1111/joa.12203

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yeung KH, Man GCW, Lam TP et al (2020) Accuracy on the preoperative assessment of patients with adolescent idiopathic scoliosis using biplanar low-dose stereoradiography: a comparison with computed tomography. BMC Musculoskelet Disord 21:558. https://doi.org/10.1186/s12891-020-03561-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Delin C, Silvera S, Bassinet C et al (2014) Ionizing radiation doses during lower limb torsion and anteversion measurements by EOS stereoradiography and computed tomography. Eur J Radiol 83:371–377. https://doi.org/10.1016/j.ejrad.2013.10.026

    Article  PubMed  Google Scholar 

  18. Courvoisier A, Vialle R, Skalli W (2014) EOS 3D imaging: assessing the impact of brace treatment in adolescent idiopathic scoliosis. Expert Rev Med Devices 11:1–3. https://doi.org/10.1586/17434440.2014.848166

    Article  CAS  PubMed  Google Scholar 

  19. Bouloussa H, Pietton R, Vergari C et al (2019) Biplanar stereoradiography predicts pulmonary function tests in adolescent idiopathic scoliosis: a cross-sectional study. Eur Spine J 28:1962–1969. https://doi.org/10.1007/s00586-019-05940-3

    Article  CAS  PubMed  Google Scholar 

  20. Janssen MMA, Drevelle X, Humbert L, et al (2009) Differences in male and female spino-pelvic alignment in asymptomatic young adults: a three-dimensional analysis using upright low-dose digital biplanar X-rays. Spine (Phila Pa 1976) 34: E826–32.https://doi.org/10.1097/BRS.0b013e3181a9fd85

  21. Humbert L, De Guise JA, Aubert B et al (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31:681–687. https://doi.org/10.1016/j.medengphy.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  22. Vergari C, Aubert B, Lallemant-Dudek P et al (2020) A novel method of anatomical landmark selection for rib cage 3D reconstruction from biplanar radiography. Comput Methods Biomech Biomed Eng Imaging Vis 8:15

    Article  Google Scholar 

  23. Laouissat F, Sebaaly A, Gehrchen M, Roussouly P (2018) Classification of normal sagittal spine alignment: refounding the Roussouly classification. Eur Spine J 27:2002–2011. https://doi.org/10.1007/s00586-017-5111-x

    Article  PubMed  Google Scholar 

  24. Ilharreborde B, Dubousset J, Le Huec J-C (2014) Use of EOS imaging for the assessment of scoliosis deformities: application to postoperative 3D quantitative analysis of the trunk. Eur Spine J 23(Suppl 4):S397-405. https://doi.org/10.1007/s00586-014-3334-7

    Article  PubMed  Google Scholar 

  25. Melhem E, Assi A, El Rachkidi R, Ghanem I (2016) EOS(®) biplanar X-ray imaging: concept, developments, benefits, and limitations. J Child Orthop 10:1–14. https://doi.org/10.1007/s11832-016-0713-0

    Article  PubMed  PubMed Central  Google Scholar 

  26. Katz S, Arish N, Rokach A et al (2018) The effect of body position on pulmonary function: a systematic review. BMC Pulm Med 18:159. https://doi.org/10.1186/s12890-018-0723-4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Diebo BG, Ferrero E, Lafage R, et al (2015) Recruitment of compensatory mechanisms in sagittal spinal malalignment is age and regional deformity dependent: a full-standing axis analysis of key radiographical parameters. Spine (Phila Pa 1976) 40: 642–9. https://doi.org/10.1097/BRS.0000000000000844

  28. Kent R, Woods W, Bostrom O (2008) Fatality risk and the presence of rib fractures. Ann Adv Automot Med Assoc Adv Automot Med Annu Sci Conf 52:73–82

    Google Scholar 

  29. Verbeken EK, Cauberghs M, Mertens I et al (1992) The senile lung. Comparison with normal and emphysematous lungs. 2. Funct Asp Chest 101:800–809. https://doi.org/10.1378/chest.101.3.800

    Article  CAS  Google Scholar 

  30. Galetke W, Feier C, Muth T et al (2007) Reference values for dynamic and static pulmonary compliance in men. Respir Med 101:1783–1789. https://doi.org/10.1016/j.rmed.2007.02.015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Khalifé.

Ethics declarations

Conflicts of interest

No conflicts to declare by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifé, M., Vergari, C., Ferrero, E. et al. The rib cage: a new element in the spinopelvic chain. Eur Spine J 31, 1457–1467 (2022). https://doi.org/10.1007/s00586-022-07216-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-022-07216-9

Keywords

Navigation