Skip to main content
Log in

Stem cell/cellular interventions in human spinal cord injury: Is it time to move from guidelines to regulations and legislations? Literature review and Spinal Cord Society position statement

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

In preclinical studies, many stem cell/cellular interventions demonstrated robust regeneration and/or repair in case of SCI and were considered a promising therapeutic candidate. However, data from clinical studies are not robust. Despite lack of substantial evidence for the efficacy of these interventions in spinal cord injury (SCI), many clinics around the world offer them as “therapy.” These “clinics” claim efficacy through patient testimonials and self-advertisement without any scientific evidence to validate their claims. Thus, SCS established a panel of experts to review published preclinical studies, clinical studies and current global guidelines/regulations on usage of cellular transplants and make recommendations for their clinical use.

Methods

The literature review and draft position statement was compiled and circulated among the panel and relevant suggestions incorporated to reach consensus. This was discussed and finalized in an open forum during the SCS Annual Meeting, ISSICON.

Results

Preclinical evidence suggests safety and clinical potency of cellular interventions after SCI. However, evidence from clinical studies consisted of mostly case reports or uncontrolled case series/studies. Data from animal studies cannot be generalized to human SCI with regard to toxicity prediction after auto/allograft transplantation.

Conclusions

Currently, cellular/stem cell transplantation for human SCI is experimental and needs to be tested through a valid clinical trial program. It is not ethical to provide unproven transplantation as therapy with commercial implications. To stop the malpractice of marketing such “unproven therapies” to a vulnerable population, it is crucial that all countries unite to form common, well-defined regulations/legislation on their use in SCI.

Graphical abstract

These slides can be retrieved from Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarda K, Chhabra HS (2015) Cellular transplantation for human spinal cord injury: an overview. In: Chhabra HS (ed) ISCoS textbook on comprehensive management of spinal cord injury, first edit. Wolters Kluwer(India)Pvt. Ltd., New Delhi, pp 1048–1058

    Google Scholar 

  2. Falanga V (2012) Stem cells in tissue repair and regeneration. J Investig Dermatol 132:1538–1541. https://doi.org/10.1038/jid.2012.77

    Article  CAS  PubMed  Google Scholar 

  3. Hyun I (2010) The bioethics of stem cell research and therapy. J Clin Investig 120:71–75. https://doi.org/10.1172/JCI40435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chhabra HS, Sarda K (2015) Stem cell therapy in spinal trauma: does it have scientific validity? Indian J Orthop 49:56–71. https://doi.org/10.4103/0019-5413.143913

    Article  PubMed  PubMed Central  Google Scholar 

  5. Can A (2008) A concise review on the classification and nomenclature of stem cells. Turk J Hematol 25:57–59

    Google Scholar 

  6. Prokhorova TA, Harkness LM, Frandsen U et al (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 18:47–54. https://doi.org/10.1089/scd.2007.0266

    Article  CAS  PubMed  Google Scholar 

  7. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Lepski G (2013) Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int 2013:786475. https://doi.org/10.1155/2013/786475

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mezey E, Key S, Vogelsang G et al (2003) Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 100:1364–1369. https://doi.org/10.1073/pnas.0336479100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779

    Article  CAS  PubMed  Google Scholar 

  11. Mariano ED, Batista CM, Barbosa BJAP et al (2014) Current perspectives in stem cell therapy for spinal cord repair in humans: a review of work from the past 10 years. Arq Neuropsiquiatr 72:451–456

    Article  PubMed  Google Scholar 

  12. Carrade DD, Affolter VK, Outerbridge CA et al (2011) Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions. Cytotherapy 13:1180–1192. https://doi.org/10.3109/14653249.2011.602338

    Article  PubMed  Google Scholar 

  13. Sarda K, Chhabra HS (2015) Spinal cord injury research: targets for repair. In: Chhabra HS (ed) ISCoS textbook on comprehensive management of spinal cord injury, first. Wolters Kluwer(India)Pvt. Ltd., New Delhi, pp 1025–1039

    Google Scholar 

  14. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627. https://doi.org/10.1038/nrn1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zurita M, Otero L, Aguayo C et al (2010) Cell therapy for spinal cord repair: optimization of biologic scaffolds for survival and neural differentiation of human bone marrow stromal cells. Cytotherapy 12:522–537. https://doi.org/10.3109/14653241003615164

    Article  CAS  PubMed  Google Scholar 

  16. Chhabra HS, Sarda K (2017) Clinical translation of stem cell based interventions for spinal cord injury—are we there yet? Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2017.09.021

    Article  PubMed  Google Scholar 

  17. Salazar DL, Uchida N, Hamers FPT et al (2010) Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS ONE 5:e12272. https://doi.org/10.1371/journal.pone.0012272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okano H, Ogawa Y, Nakamura M et al (2003) Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol 14:191–198

    Article  CAS  PubMed  Google Scholar 

  19. Ziegler MD, Hsu D, Takeoka A et al (2011) Further evidence of olfactory ensheathing glia facilitating axonal regeneration after a complete spinal cord transection. Exp Neurol 229:109–119. https://doi.org/10.1016/j.expneurol.2011.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramón-Cueto A, Avila J (1998) Olfactory ensheathing glia: properties and function. Brain Res Bull 46:175–187

    Article  PubMed  Google Scholar 

  21. Imaizumi T, Lankford KL, Waxman SG et al (1998) Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J Neurosci 18:6176–6185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kato T, Honmou O, Uede T et al (2000) Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia 30:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramón-Cueto A, Cordero MI, Santos-Benito FF, Avila J (2000) Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25:425–435

    Article  PubMed  Google Scholar 

  24. Raisman G, Barnett SC, Ramón-Cueto A (2012) Repair of central nervous system lesions by transplantation of olfactory ensheathing cells. Handb Clin Neurol 109:541–549. https://doi.org/10.1016/B978-0-444-52137-8.00033-4

    Article  PubMed  Google Scholar 

  25. Toft A, Scott DT, Barnett SC, Riddell JS (2007) Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury. Brain 130:970–984. https://doi.org/10.1093/brain/awm040

    Article  PubMed  Google Scholar 

  26. Barnett SC, Alexander CL, Iwashita Y et al (2000) Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 123(Pt 8):1581–1588

    Article  PubMed  Google Scholar 

  27. Ramón-Cueto A, Plant GW, Avila J, Bunge MB (1998) Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 18:3803–3815

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu J, Féron F, Ho SM et al (2001) Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res 889:344–357

    Article  CAS  PubMed  Google Scholar 

  29. Weidner N, Blesch A, Grill RJ, Tuszynski MH (1999) Nerve growth factor-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1. J Comp Neurol 413:495–506

    Article  CAS  PubMed  Google Scholar 

  30. Park H-W, Lim M-J, Jung H et al (2010) Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia 58:1118–1132. https://doi.org/10.1002/glia.20992

    Article  PubMed  Google Scholar 

  31. Xu Y, Liu Z, Liu L et al (2008) Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro. BMC Neurosci 9:21. https://doi.org/10.1186/1471-2202-9-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biernaskie JA, McKenzie IA, Toma JG, Miller FD (2006) Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nat Protoc 1:2803–2812. https://doi.org/10.1038/nprot.2006.422

    Article  CAS  PubMed  Google Scholar 

  33. Xu XM, Chen A, Guénard V et al (1997) Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J Neurocytol 26:1–16

    Article  CAS  PubMed  Google Scholar 

  34. Kanno H, Pressman Y, Moody A et al (2014) Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci 34:1838–1855. https://doi.org/10.1523/JNEUROSCI.2661-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saberi H, Moshayedi P, Aghayan H-R et al (2008) Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 443:46–50. https://doi.org/10.1016/j.neulet.2008.07.041

    Article  CAS  PubMed  Google Scholar 

  36. Yazdani SO, Hafizi M, Zali A-R et al (2013) Safety and possible outcome assessment of autologous Schwann cell and bone marrow mesenchymal stromal cell co-transplantation for treatment of patients with chronic spinal cord injury. Cytotherapy 15:782–791. https://doi.org/10.1016/j.jcyt.2013.03.012

    Article  PubMed  Google Scholar 

  37. Lima C, Pratas-Vital J, Escada P et al (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29:191–203 (discussion 204–6)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mackay-Sim A, Féron F, Cochrane J et al (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 131:2376–2386. https://doi.org/10.1093/brain/awn173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chhabra HS, Lima C, Sachdeva S et al (2009) Autologous olfactory [corrected] mucosal transplant in chronic spinal cord injury: an Indian Pilot Study. Spinal Cord 47:887–895. https://doi.org/10.1038/sc.2009.54

    Article  CAS  PubMed  Google Scholar 

  40. Zhou X-H, Ning G-Z, Feng S-Q et al (2012) Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up. Cell Transplant 21(Suppl 1):S39–S47. https://doi.org/10.3727/096368912X633752

    Article  PubMed  Google Scholar 

  41. Prewitt CM, Niesman IR, Kane CJ, Houlé JD (1997) Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp Neurol 148:433–443. https://doi.org/10.1006/exnr.1997.6694

    Article  CAS  PubMed  Google Scholar 

  42. Pedram MS, Dehghan MM, Soleimani M et al (2010) Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats. Spinal Cord 48:457–463. https://doi.org/10.1038/sc.2009.153

    Article  CAS  PubMed  Google Scholar 

  43. Tarasenko YI, Gao J, Nie L et al (2007) Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res 85:47–57. https://doi.org/10.1002/jnr.21098

    Article  CAS  PubMed  Google Scholar 

  44. Shin JC, Kim KN, Yoo J et al (2015) Clinical trial of human fetal brain-derived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury. Neural Plast 2015:630932. https://doi.org/10.1155/2015/630932

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bretzner F, Gilbert F, Baylis F, Brownstone RM (2011) Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell 8:468–475. https://doi.org/10.1016/j.stem.2011.04.012

    Article  CAS  PubMed  Google Scholar 

  46. Deb KD, Sarda K (2008) Human embryonic stem cells: preclinical perspectives. J Transl Med 6:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lebkowski J (2011) GRNOPC1: the world’s first embryonic stem cell-derived therapy. Interview with Jane Lebkowski. Regen Med 6:11–13. https://doi.org/10.2217/rme.11.77

    Article  PubMed  Google Scholar 

  48. Liras A (2010) Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J Transl Med 8:131. https://doi.org/10.1186/1479-5876-8-131

    Article  PubMed  PubMed Central  Google Scholar 

  49. Knoller N, Auerbach G, Fulga V et al (2005) Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 3:173–181. https://doi.org/10.3171/spi.2005.3.3.0173

    Article  PubMed  Google Scholar 

  50. Bansal H, Verma P, Agrawal A et al (2016) Autologous bone marrow-derived stem cells in spinal cord injury. J Stem Cells 11:51–61

    PubMed  Google Scholar 

  51. Oh SK, Choi KH, Yoo JY et al (2016) A phase III clinical trial showing limited efficacy of autologous mesenchymal stem cell therapy for spinal cord injury. Neurosurgery 78:436–447. https://doi.org/10.1227/NEU.0000000000001056

    Article  PubMed  Google Scholar 

  52. Satti HS, Waheed A, Ahmed P et al (2016) Autologous mesenchymal stromal cell transplantation for spinal cord injury: a phase I pilot study. Cytotherapy 18:518–522. https://doi.org/10.1016/j.jcyt.2016.01.004

    Article  PubMed  Google Scholar 

  53. Vaquero J, Zurita M, Rico MA et al (2016) An approach to personalized cell therapy in chronic complete paraplegia: the Puerta de Hierro phase I/II clinical trial. Cytotherapy 18:1025–1036. https://doi.org/10.1016/j.jcyt.2016.05.003

    Article  PubMed  Google Scholar 

  54. Vaquero J, Zurita M, Rico MA et al (2017) Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy 19:349–359. https://doi.org/10.1016/j.jcyt.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  55. Lammertse D, Tuszynski MH, Steeves JD et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: clinical trial design. Spinal Cord 45:232–242. https://doi.org/10.1038/sj.sc.3102010

    Article  CAS  PubMed  Google Scholar 

  56. Tuszynski MH, Steeves JD, Fawcett JW et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP Panel: clinical trial inclusion/exclusion criteria and ethics. Spinal Cord 45:222–231. https://doi.org/10.1038/sj.sc.3102009

    Article  CAS  PubMed  Google Scholar 

  57. Steeves JD, Lammertse D, Curt A et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord 45:206–221. https://doi.org/10.1038/sj.sc.3102008

    Article  CAS  PubMed  Google Scholar 

  58. Fawcett JW, Curt A, Steeves JD et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45:190–205. https://doi.org/10.1038/sj.sc.3102007

    Article  CAS  PubMed  Google Scholar 

  59. Sharma A (2006) Stem cell research in India: emerging scenario and policy concerns. Asian Biotechnol Dev Rev 8:43–53

    Google Scholar 

  60. MacGregor C, Petersen A, Munsie M (2015) Regulation of unproven stem cell therapies—medicinal product or medical procedure? http://www.eurostemcell.org/commentanalysis/regulation-unproven-stem-cell-therapies-medicinal-product-or-medical-procedure

  61. European Medicines Agency/EMA (2010) Concerns over unregulated medicinal products containing stem cells. 16 April EMA/763463

  62. Munsie M, Pera M (2014) Regulatory loophole enables unproven autologous cell therapies to thrive in Australia. Stem Cells Dev 23:34–38. https://doi.org/10.1089/scd.2014.0332

    Article  PubMed  Google Scholar 

  63. TGA. Products regulated as biologicals. https://www.tga.gov.au/products-regulated-biologicals. Accessed 1 Jan 2015

  64. Turner L (2015) US stem cell clinics, patient safety, and the FDA. Trends Mol Med 21:271–273. https://doi.org/10.1016/j.molmed.2015.02.008

    Article  PubMed  Google Scholar 

  65. Cyranoski D (2012) FDA’s claims over stem cells upheld. Nature 488:14. https://doi.org/10.1038/488014a

    Article  CAS  PubMed  Google Scholar 

  66. National Guidelines on Stem Cell Research (2013) Director general. Indian Council of Medical Research, New Delhi

    Google Scholar 

  67. George B (2011) Regulations and guidelines governing stem cell based products: clinical considerations. Perspect Clin Res 2:94–99. https://doi.org/10.4103/2229-3485.83228

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jotwani G, Das SS (2017) National guidelines for stem cell research. Indian Council of Medical Research & Department of Biotechnology, New Delhi

    Google Scholar 

  69. Tiwari SS, Raman S (2014) Governing stem cell therapy in India: regulatory vacuum or jurisdictional ambiguity? New Genet Soc 33:413–433. https://doi.org/10.1080/14636778.2014.970269

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jayaraman KS (2005) Indian regulations fail to monitor growing stem-cell use in clinics. Nature 434:259. https://doi.org/10.1038/434259a

    Article  CAS  PubMed  Google Scholar 

  71. Pandya SK (2008) Stem cell transplantation in India: tall claims, questionable ethics. Indian J Med Ethics 5:15–17

    PubMed  Google Scholar 

  72. Sipp D (2009) The rocky road to regulation. Nat Rep Stem Cells 23–27. https://doi.org/10.1038/stemcells.2009.125

  73. Cohen CB, Cohen PJ (2010) International stem cell tourism and the need for effective regulation. Part I: stem cell tourism in Russia and India: clinical research, innovative treatment, or unproven hype? Kennedy Inst Ethics J 20:27–49. https://doi.org/10.1353/ken.0.0305

    Article  PubMed  Google Scholar 

  74. Salter B, Cooper M, Dickins A, Cardo V (2007) Stem cell science in India: emerging economies and the politics of globalization. Regen Med 2:75–89. https://doi.org/10.2217/17460751.2.1.75

    Article  PubMed  Google Scholar 

  75. Bubela T, Li MD, Hafez M et al (2012) Is belief larger than fact: expectations, optimism and reality for translational stem cell research. BMC Med 10:133. https://doi.org/10.1186/1741-7015-10-133

    Article  PubMed  PubMed Central  Google Scholar 

  76. Goldring CEP, Duffy PA, Benvenisty N et al (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell 8:618–628. https://doi.org/10.1016/j.stem.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  77. Hyun I, Lindvall O, Ahrlund-Richter L et al (2008) New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell 3:607–609. https://doi.org/10.1016/j.stem.2008.11.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvinder S. Chhabra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 236 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhabra, H.S., Sarda, K., Jotwani, G. et al. Stem cell/cellular interventions in human spinal cord injury: Is it time to move from guidelines to regulations and legislations? Literature review and Spinal Cord Society position statement. Eur Spine J 28, 1837–1845 (2019). https://doi.org/10.1007/s00586-019-06003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-019-06003-3

Keywords

Navigation