Skip to main content

Advertisement

Log in

Reduced expression of miRNA-1237-3p associated with poor survival of spinal chordoma patients

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Aberrant expression of miRNAs has been demonstrated to contribute to human carcinogenesis. This study was aimed at profiling differentially expressed miRNAs in formalin-fixed and paraffin-embedded tissues of spinal chordoma and testing the potential for using altered expression of miRNAs as prognostic markers for spinal chordoma patients.

Methods

A miRNA array was used to profile differentially expressed miRNAs in spinal chordoma and nucleus pulposus tissues. Four of these differentially expressed miRNAs was then validated in spinal chordoma and control patients using quantitative RT-PCR. Bioinformatical analysis identified potential GO terms and signaling pathways affected by these microRNAs. Altered miR-1237-3p expression was then found to be associated with clinicopathological characteristics and prognosis of spinal chordoma patients.

Results

The miRNA arrays identified 29 differentially expressed miRNAs in spinal chordoma tissues, four of which were verified by qRT-PCR in 42 spinal chordomas and 14 control tissues. Bioinformatical analysis revealed that the potential target genes of these miRNAs were mainly involved in gene transcription, cell junction proteins, and gene pathways in cancer and endocytosis. Reduced miR-1237-3p expression was associated with tumor invasion and worse recurrence-free survival of spinal chordoma patients (χ 2 = 16.217, p = 0.000, log-rank test). Multivariate analyses showed that miR-1237-3p expression was an independent prognostic factor for patients with spinal chordoma (HR = 0.001, 95 % CI 0.000–0.136, p = 0.005).

Conclusion

The data from the current study identified a total of 29 differentially expressed miRNAs in chordoma tissues and reduced miR-1237-3p expression was associated with chordoma invasion and worse recurrence-free survival of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bydon M, Papadimitriou K, Witham T, Wolinsky JP, Bydon A, Sciubba D, Gokaslan Z (2012) Novel therapeutic targets in chordoma. Expert Opin Ther Targets 16(11):1139–1143

    Article  CAS  PubMed  Google Scholar 

  2. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM (2001) Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control 12:1–11

    Article  CAS  PubMed  Google Scholar 

  3. Park L, Delaney TF, Liebsch NJ, Hornicek FJ, Goldberg S, Mankin H, Rosenberg AE, Rosenthal DI, Suit HD (2006) Sacral chordomas: impact of high-dose proton/photon-beam radiation therapy combined with or without surgery for primary versus recurrent tumor. Int J Radiat Oncol Biol Phys 65(5):1514–1521

    Article  PubMed  Google Scholar 

  4. Hsieh PC, Xu R, Sciubba DM, McGirt MJ, Nelson C, Witham TF, Wolinksy JP, Gokaslan ZL (2009) Long-term clinical outcomes following en bloc resections for sacral chordomas and chondrosarcomas: a series of twenty consecutive patients. Spine (Phila Pa 1976) 34(20):2233–2239

    Article  Google Scholar 

  5. Fuchs B, Dickey ID, Yaszemski MJ, Inwards CY, Sim FH (2005) Operative management of sacral chordoma. J Bone Joint Surg Am 87(10):2211–2216

    Article  PubMed  Google Scholar 

  6. Akhavan-Sigari R, Gaab MR, Rohde V, Abili M, Ostertag H (2014) Expression of PDGFR-α, EGFR and c-MET in spinal chordoma: a series of 52 patients. Anticancer Res 34(2):623–630

    PubMed  Google Scholar 

  7. de Castro CV, Guimaraes G, Aguiar S Jr, Lopes A, Baiocchi G, da Cunha IW, Campos AH, Soares FA, Begnami MD (2013) Tyrosine kinase receptor expression in chordomas: phosphorylated AKT correlates inversely with outcome. Hum Pathol 44(9):1747–1755

    Article  PubMed  Google Scholar 

  8. Hu H, Yang HL, Lu J, Chen KW, Qiu YH, Liu W, Luo ZP (2012) Association of telomerase expression with recurrence of sacral chordoma. Ann Oncol 23(10):2772

    Article  CAS  PubMed  Google Scholar 

  9. Horbinski C, Oakley GJ, Cieply K, Mantha GS, Nikiforova MN, Dacic S, Seethala RR (2010) The prognostic value of Ki-67, p53, epidermal growth factor receptor, 1p36, 9p21, 10q23, and 17p13 in skull base chordomas. Arch Pathol Lab Med 134(8):1170–1176

    PubMed Central  PubMed  Google Scholar 

  10. Shruti K, Shrey K, Vibha R (2011) Micro RNAs: tiny sequences with enormous potential. Biochem Biophys Res Commun 407(3):445–449

    Article  CAS  PubMed  Google Scholar 

  11. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11(4):252–263

    Article  CAS  PubMed  Google Scholar 

  12. Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S, Cheng CL, Yu CJ, Lee YC, Chen HS, Su TJ, Chiang CC, Li HN, Hong QS, Su HY, Chen CC, Chen WJ, Liu CC, Chan WK, Chen WJ, Li KC, Chen JJ, Yang PC (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48–57

    Article  CAS  PubMed  Google Scholar 

  13. Ozen M, Creighton CJ, Ozdemir M, Ittmann M (2008) Wide-spread deregulation of microRNA expression in human prostate cancer. Oncogene 27:1788–1793

    Article  CAS  PubMed  Google Scholar 

  14. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, Poon TC, Ng SS, Sung JJ (2009) Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58:1375–1381

    Article  CAS  PubMed  Google Scholar 

  15. Duan Z, Choy E, Nielsen GP, Rosenberg A, Iafrate J, Yang C, Schwab J, Mankin H, Xavier R, Hornicek FJ (2010) Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in Met expression. J Orthop Res 28(6):746–752

    CAS  PubMed  Google Scholar 

  16. Bayrak OF, Gulluoglu S, Aydemir E, Ture U, Acar H, Atalay B, Demir Z, Sevli S, Creighton CJ, Ittmann M, Sahin F, Ozen M (2013) MicroRNA expression profiling reveals the potential function of microRNA-31 in chordomas. J Neurooncol 115(2):143–151

    Article  CAS  PubMed  Google Scholar 

  17. Long C, Jiang L, Wei F, Ma C, Zhou H, Yang S, Liu X, Liu Z (2013) Integrated miRNA-mRNA analysis revealing the potential roles of miRNAs in chordomas. PLoS One 8(6):e66676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Duan Z, Shen J, Yang X, Yang P, Osaka E, Choy E, Cote G, Harmon D, Zhang Y, Nielsen GP, Spentzos D, Mankin H, Hornicek F (2014) Prognostic significance of miRNA-1 (miR-1) expression in patients with chordoma. J Orthop Res 32(5):695–701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang Y, Schiff D, Park D, Abounader R (2014) MicroRNA-608 and MicroRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET. PLoS One 9(3):e91546

    Article  PubMed Central  PubMed  Google Scholar 

  20. Chen K, Mo J, Zhou M, Wang G, Wu G, Chen H, Zhang K, Yang H (2014) Expression of PTEN and mTOR in sacral chordoma and association with poor prognosis. Med Oncol 31(4):886

    Article  PubMed  Google Scholar 

  21. Samson IR, Springfield DS, Suit HD, Mankin HJ (1993) Operative treatment of sacrococcygeal chordoma. A review of twenty-one cases. J Bone Joint Surg Am 75(10):1476–1484

    CAS  PubMed  Google Scholar 

  22. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66

    Article  PubMed  Google Scholar 

  23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3(7):e131

    Article  PubMed Central  PubMed  Google Scholar 

  25. Naka T, Kuester D, Boltze C, Schulz TO, Samii A, Herold C, Ostertag H, Roessner A (2008) Expression of matrix metalloproteinases-1, -2, and -9; tissue inhibitors of matrix metalloproteinases-1 and -2; cathepsin B; urokinase plasminogen activator; and plasminogen activator inhibitor, type I in skull base chordoma. Hum Pathol 39(2):217–223

    Article  CAS  PubMed  Google Scholar 

  26. Naka T, Boltze C, Kuester D, Schulz TO, Samii A, Herold C, Ostertag H, Roessner A (2004) Expression of matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, cathepsin B, and urokinase plasminogen activator in non-skull base chordoma. Am J Clin Pathol 122(6):926–930

    Article  CAS  PubMed  Google Scholar 

  27. Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13(10):1668–1674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Deng ZQ, Yin JY, Tang Q, Liu FQ, Qian J, Lin J, Shao R, Zhang M, He L (2014) Over-expression of miR-98 in FFPE tissues might serve as a valuable source for biomarker discovery in breast cancer patients. Int J Clin Exp Pathol 7(3):1166–1171

    PubMed Central  PubMed  Google Scholar 

  29. Peiró-Chova L, Peña-Chilet M, López-Guerrero JA, García-Giménez JL, Alonso-Yuste E, Burgues O, Lluch A, Ferrer-Lozano J, Ribas G (2013) High stability of microRNAs in tissue samples of compromised quality. Virchows Arch 463(6):765–774

    Article  PubMed  Google Scholar 

  30. Li X, Lu Y, Chen Y, Lu W, Xie X (2013) MicroRNA profile of paclitaxel-resistant serous ovarian carcinoma based on formalin-fixed paraffin-embedded samples. BMC Cancer 13:216–223

    Article  PubMed Central  PubMed  Google Scholar 

  31. Fu SW, Chen L, Man YG (2011) miRNA biomarkers in breast cancer detection and management. J Cancer 2:116–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhang X, Chen J, Radcliffe T, Lebrun DP, Tron VA, Feilotter H (2008) An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples. J Mol Diagn 10(6):513–519

    Article  PubMed Central  PubMed  Google Scholar 

  33. Choi KS, Cohn MJ, Harfe BD (2008) Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 237:3953–3958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Barry JJ, Jian BJ, Sughrue ME, Kane AJ, Mills SA, Tihan T, Parsa AT (2011) The next step: innovative molecular targeted therapies for treatment of intracranial chordoma patients. Neurosurgery 68(1):231–240 discussion 240-1

    Article  PubMed  Google Scholar 

  35. Diaz RJ, Cusimano MD (2011) The biological basis for modern treatment of chordoma. J Neurooncol 104(2):411–422

    Article  PubMed  Google Scholar 

  36. Di Fiore PP (2009) Endocytosis, signaling and cancer, much more than meets the eye. Preface. Mol Oncol 3(4):273–279

    Article  PubMed  Google Scholar 

  37. Polo S, Pece S, Di Fiore PP (2004) Endocytosis and cancer. Curr Opin Cell Biol 16(2):156–161

    Article  CAS  PubMed  Google Scholar 

  38. Lanzetti L, Di Fiore PP (2008) Endocytosis and cancer: an ‘insider’ network with dangerous liaisons. Traffic 9(12):2011–2021

    Article  CAS  PubMed  Google Scholar 

  39. Mellman I, Yarden Y (2013) Endocytosis and cancer. Cold Spring Harb Perspect Biol 5(12):a016949

    Article  PubMed  Google Scholar 

  40. Raitoharju E, Seppälä I, Oksala N, Lyytikäinen LP, Raitakari O, Viikari J, Ala-Korpela M, Soininen P, Kangas AJ, Waldenberger M, Klopp N, Illig T, Leiviskä J, Loo BM, Hutri-Kähönen N, Kähönen M, Laaksonen R, Lehtimäki T (2014) Blood microRNA profile associates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome: the cardiovascular risk in Young Finns Study. Mol Cell Endocrinol 391(1–2):41–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank OE Bio-tech (Shanghai, China) for technical support of this study. We also thank Medjaden Bioscience Limited (Hong Kong, China) for assistance in preparation of this manuscript.

Conflict of interest

The authors declare that there is no conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1(DOC 172 kb)

586_2015_3927_MOESM2_ESM.jpg

Supplementary material 2. Analysis of miRNA–gene GO network. The blue box represents down-regulated miRNA-repressed gene (mRNA), red square represents down-regulated miRNA, and green square represents significant GO terms regulated by these miRNAs. The relationship between miRNAs, target genes and GOs are represented by gray lines. (JPEG 1333 kb)

586_2015_3927_MOESM3_ESM.jpg

Supplementary material 3. Analysis of miRNA–gene network. The blue box represents up-regulated miRNA-repressed genes (mRNA) and the red square represents up-regulated miRNA. The relationship between miRNAs and the target genes are represented by gray lines. (JPEG 3051 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Mx., Huang, W., Wang, Xb. et al. Reduced expression of miRNA-1237-3p associated with poor survival of spinal chordoma patients. Eur Spine J 24, 1738–1746 (2015). https://doi.org/10.1007/s00586-015-3927-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-3927-9

Keywords

Navigation