Skip to main content

Advertisement

Log in

Is a single anterolateral screw-plate fixation sufficient for the treatment of spinal fractures in the thoracolumbar junction? A Biomechanical in vitro Investigation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Controversy exists about the indications, advantages and disadvantages of various surgical techniques used for anterior interbody fusion of spinal fractures in the thoracolumbar junction. The purpose of this study was to evaluate the stabilizing effect of an anterolateral and thoracoscopically implantable screw-plate system. Six human bisegmental spinal units (T12–L2) were used for the biomechanical in vitro testing procedure. Each specimen was tested in three different scenarios: (1) intact spinal segments vs (2) monosegmental (T12/L1) anterolateral fixation (macsTL, Aesculap, Germany) with an interbody bone strut graft from the iliac crest after both partial corpectomy (L1) and discectomy (T12/L1) vs (3) bisegmental anterolateral instrumentation after extended partial corpectomy (L1), and bisegmental discectomy (T12/L1 and L1/L2). Specimens were loaded with an alternating, nondestructive maximum bending moment of ±7.5 Nm in six directions: flexion/extension, right and left lateral bending, and right and left axial rotation. Motion analysis was performed by a contact-less three-dimensional optical measuring system. Segmental stiffness of the three different scenarios was evaluated by the relative alteration of the intervertebral angles in the three main anatomical planes. With each stabilization technique, the specimens were more rigid, compared with the intact spine, for flexion/extension (sagittal plane) as well as in left and right lateral bending (frontal plane). In these planes the bisegmental instrumentation compared to the monosegmental case had an even larger stiffening effect on the specimens. In contrast to these findings, axial rotation showed a modest increase of motion after bisegmental instrumentation. To conclude, the immobilization of monosegmental fractures in the thoracolumbar junction can be secured by means of bone grafting and the implant used in this study for all three anatomical planes. After bisegmental anterolateral stabilization a sufficient reduction of the movements was registered for flexion/extension and lateral bending. However, the observed slight increase of the range of motion in the transversal plane may lead to loosening of the implant before union. Therefore, the use of an additional dorsal fixation device should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. An HS, Lim TH, You JW, Hong JH, Eck J, McGrady L (1995) Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. Spine 20:1979–1983

    CAS  PubMed  Google Scholar 

  2. Been HD, Bouma GJ (1999) Comparison of two types of surgery for thoraco-lumbar burst fractures: combined anterior and posterior stabilisation vs. posterior instrumentation only. Acta Neurochir (Wien) 141:349–357

    Google Scholar 

  3. Beisse R, Potulski M, Bühren V (2001) Endoscopic techniques for the management of spinal trauma. Eur J Trauma 27:275–291

    Google Scholar 

  4. Beisse R, Potulski M, Beger J, Bühren V (2002) Development and clinical application of a thoracoscopically implantable anterior plate for treatment of thoracolumbar fractures and instabilities. Orthopäde 31:413–422

    Google Scholar 

  5. Bernhardt M, Bridwell KH (1989) Segmental analysis of the sagittal plane alignment of the normal thoracic and lumbar spines and thoracolumbar junction. Spine 14:717–721

    CAS  PubMed  Google Scholar 

  6. Bühren V (2001) Injuries of the thoracic and lumbar spine. Chirurg 72:865–878

    PubMed  Google Scholar 

  7. Burchardt H (1983) The biology of bone graft repair. Clin Orthop 174:28–42

    PubMed  Google Scholar 

  8. Dhillon N, Bass EC, Lotz JC (2001) Effect of frozen storage on the creep behavior of human intervertebral discs. Spine 26:883–888

    Article  CAS  PubMed  Google Scholar 

  9. Ferguson RL, Tencer AF, Woodward P, Allen BL Jr (1988) Biomechanical comparison of spinal fracture models and the stabilizing effects of posterior instrumentations. Spine 13:453–460

    CAS  PubMed  Google Scholar 

  10. Friedlaender GE (1987) Bone grafts. The basic science rationale of clinical applications. J Bone Joint Surg Am 69:786–790

    CAS  PubMed  Google Scholar 

  11. Frost HM (1989) The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop 248:283–293

    PubMed  Google Scholar 

  12. Grupp TM, Beisse R, Potulski M, Marnay T, Beger J, Blömer W (2002) Mechanical testing of implant properties of thoracoscopic implantation of ventral spinal stabilizing systems. Comparative study with the ISO/DIS 12189–2 corpectomy model and an improved synthetic model. Orthopäde 31(4): 406–412

    Google Scholar 

  13. Knop C, Blauth M, Bastian L, Lange U, Kesting J, Tscherne H (1997) Fractures of the thoracolumbar spine. Late results and consequences of dorsal instrumentation. Unfallchirurg 100:630–639

    Article  CAS  PubMed  Google Scholar 

  14. Knop C, Lange U, Bastian L, Blauth M (2001) Biomechanical stability with a new artificial vertebral body implant. 3-dimensional movement analysis of instrumented human vertebral segments. Unfallchirurg 104 (10): 984–997

    Article  CAS  PubMed  Google Scholar 

  15. Krag MH (1991) Biomechanics of thoracolumbar spinal fixation. A review. Spine [Suppl] 16:84–99

  16. Langrana NA, Lee CK (1998) Lumbosacral spinal fusion: biomechanical and clinical considerations. Seminars in spine surgery. 10(2):172–181

    Google Scholar 

  17. Lim TH, An HS, Hong JH, Ahn JY, You JW, Eck J, McGrady LM (1997) Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. Spine 22:261–266

    Article  CAS  PubMed  Google Scholar 

  18. Magerl F, Aebi M, Gertzbein D, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201

    CAS  PubMed  Google Scholar 

  19. McAfee PC, Farey ID, Sutterlin CE, Gurr KR, Warden KE, Cunningham BW (1989) 1989 Volvo Award in basic science. Device-related osteoporosis with spinal instrumentation. Spine 14:919–926

    CAS  PubMed  Google Scholar 

  20. Oxland TR, Lin RM, Panjabi MM (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10:573–580

    CAS  PubMed  Google Scholar 

  21. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 76:413–424

    CAS  PubMed  Google Scholar 

  22. Potulski M, Beisse R, Bühren (1999) Thoracoscopy-guided management of the “anterior column”. Methods and results. Orthopäde 28:723–730

  23. Schreiber U, Bence T, Bader R, Beisse R, Grupp T, Mittelmeier W, Steinhauser E (2001) Validation of a newly developed experimental setup for segmental spinal testing. J Biomech [Suppl] 34:65–66

    Google Scholar 

  24. Schultheiss M, Wilke HJ, Claes L, Kinzl L, Hartwig E(2002) MACS-TL twin screw. A new thoracoscopic implantable stabilization system for treatment of vertebral fractures-implant design, implantation technique and in vitro testing. Orthopäde 31:362–367

    Google Scholar 

  25. Schultheiss M, Kinzl L, Claes L, Wilke HJ, Hartwig E (2003) Minimally invasive ventral spondylodesis for thoracolumbar fracture treatment: surgical technique and first clinical outcome. Eur Spine J [July 31, Epub ahead of print]

    Google Scholar 

  26. Schwitalle M, Eysel P, Oberstein A, Degreif J, Kirkpatrick CJ (1997) Determination of bone quality before spinal instrumentation—value of different in vivo methods. Z Orthop Ihre Grenzgeb 135:217–221

    CAS  PubMed  Google Scholar 

  27. von Strempel A, Plitz W, Kühle J, Seidel T, Sukopp C (1994) Biomechanical prerequisites for examining the stability of osteosynthesis procedures of the spine. Unfallchirurg 97:343–346

    PubMed  Google Scholar 

  28. Vahldiek MJ, Panjabi MM (1998) Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. Spine 23:543–550

    Article  CAS  PubMed  Google Scholar 

  29. Vahldiek M, Gossè F, Panjabi MM (2002) Stability of ventral, dorsal and combined spondylodesis in vertebral body prosthesis implantation. Orthopäde 31:508–513

    Google Scholar 

  30. Wahner H (1989) Measurements of bone mass and bone density. Endocrinol Metab Clin North Am 18:995–1012

    CAS  PubMed  Google Scholar 

  31. Wilke HJ, Wenger K, Claes LE (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    Article  CAS  PubMed  Google Scholar 

  32. Wilke HJ, Kemmerich V, Claes LE, Arand M (2001) Combined anteroposterior spinal fixation provides superior stabilisation to a single anterior or posterior procedure. J Bone Joint Surg Br 83:609–617

    Article  CAS  PubMed  Google Scholar 

  33. Wittenberg RH, Shea M, Edwards WT, Swartz DE, White AA 3rd, Hayes WC (1992) A biomechanical study of the fatigue characteristics of thoracolumbar fixation implants in a calf spine model. Spine [Suppl] 17:121–128

    Google Scholar 

  34. Wood GW 2nd, Boyd RJ, Carothers TA, Mansfield FL, Rechtine GL, Rozen MJ, Sutterlin CE 3rd (1995) The effect of pedicle screw/plate fixation on lumbar/lumbosacral autogenous bone graft fusions in patients with degenerative disc disease. Spine 20:819–830

    PubMed  Google Scholar 

  35. Yamamoto I, Panjabi MM, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Aesculap for providing funding for this study, and C. Klauss and Dr. M. Hennig of the Institute for Medical Statistics and Epidemiology, Technical University of Munich for their support in statistical analysis

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schreiber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, U., Bence, T., Grupp, T. et al. Is a single anterolateral screw-plate fixation sufficient for the treatment of spinal fractures in the thoracolumbar junction? A Biomechanical in vitro Investigation. Eur Spine J 14, 197–204 (2005). https://doi.org/10.1007/s00586-004-0770-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-004-0770-9

Keywords

Navigation