Skip to main content

Advertisement

Log in

Influence of screw-cement enhancement on the stability of anterior thoracolumbar fracture stabilization with circumferential instability

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The influence of additional dorsal structure damage on anterior stabilization of a thoracolumbar fracture is still unknown. Screw-cement enhancement can be used to reinforce the stability of anterior instrumentation. We have developed a new anchorage system for fixation of anterior stabilization devices, adapted through geometric optimization and the additional option of cementation after screw insertion. This study examines the question of whether this enhancement is strong enough to enable a single anterior procedure and still compensate for dorsal instability. Various spinal reconstruction procedures were evaluated biomechanically in an increasing ventrodorsal instability model for thoracolumbar fracture stabilization. A biomechanical in vitro study, simulating stabilized defect situations (corporectomy/vertebrectomy) with strut grafting and overbridging instrumentation, was performed on six human T10–L2 cadaveric specimens. The primary stability parameters, range of motion and neutral zone, were evaluated with or without anterior screw-cement enhancement. This was compared with a single conventional anterior stabilization without a dorsal defect (corporectomy). It was also compared with a single anterior, posterior or combined procedure in the presence of additional dorsal structure damage (vertebrectomy). The use of an additional cementable screw dowel enhanced the primary stability of the anterior instrumentation, compensating for dorsal instability. These results are warranted for the clinical use of minimally open or endoscopic techniques, creating the highest possible primary stability while performing a single anterior enhanced instrumentation with a tissue-preserving approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abumi K, Panjabi MM, Duranceau J (1989) Biomechanical evaluation of spinal fixation devices. III. Stability provided by six spinal fixation devices and interbody bone graft. Spine 14:1249–55

    CAS  PubMed  Google Scholar 

  2. An HS, Lim TH, You JW, Hong JH, Eck J, McGrady LM (1995) Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. Spine 20:1979–1983

    CAS  PubMed  Google Scholar 

  3. Beisse R, Potulski M, Temme C, Buhren V (1998) Endoscopically controlled division of the diaphragm. A minimally invasive approach to ventral management of thoracolumbar fractures of the spine. Unfallchirurg 101:619–627

    Article  CAS  PubMed  Google Scholar 

  4. Beisse R, Potulski M, Bühren V (2000) Thoracoscopic-assisted anterior approach to thoracolumbar fractures. In: Mayer HM (ed) Minimally invasive spine surgery. A surgical manual. Springer, Berlin Heidelberg New York

  5. Buhren V, Beisse R, Potulski M (1997) Minimally invasive ventral spondylodesis in injuries to the thoracic and lumbar spine. Chirurg 68:1076–1084

    PubMed  Google Scholar 

  6. Cunningham BW, Kotani Y, McNulty PS, Cappuccino A, Kanayama M, Fedder IL, McAfee PC (1998) Video-assisted thoracoscopic surgery versus open thoracotomy for anterior thoracic spinal fusion. A comparative radiographic, biomechanical, and histologic analysis in a sheep model. Spine 23:1333–1340

    Article  CAS  PubMed  Google Scholar 

  7. Dick JC, Brodke DS, Zdeblick TA, Bartel BD, Kunz DN, Rapoff AJ (1997) Anterior instrumentation of the thoracolumbar spine. A biomechanical comparison. Spine 22:744–750

    CAS  PubMed  Google Scholar 

  8. Dickman CA, Rosenthal D, Karahalios DG, Paramore CG, Mican CA, Apostolides PJ, Lorenz R, Sonntag VK (1996) Thoracic vertebrectomy and reconstruction using a microsurgical thoracoscopic approach. Neurosurgery 38:279–293

    CAS  PubMed  Google Scholar 

  9. Gurr KR, McAfee PC, Shih CM (1988) Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. J Bone Joint Surg Am 70:1182–1191

    Google Scholar 

  10. Hitchon PW, Goel VK, Rogge T, Grosland N, Torner J (1999) Biomechanical studies on two anterior thoracolumbar implants in cadaveric spines. Spine 24:213–218

    Article  CAS  PubMed  Google Scholar 

  11. Hitchon PW, Goel VK, Rogge TN, Torner JC, Dooris AP, Drake JS, Yang SJ, Totoribe BS, Totoribe K (2000) In vitro biomechanical analysis of three anterior thoracolumbar implants. J Neurosurg (2)93:252–258

    Google Scholar 

  12. Huang TJ, Hsu RW, Liu HP, Hsu KY, Liao YS, Shih HN, Chen YJ (1997) Video-assisted thoracoscopic treatment of spinal lesions in the thoracolumbar junction. Surg Endosc 11:1189–1193

    Article  CAS  PubMed  Google Scholar 

  13. Huang TJ, Hsu RW, Liu HP, Liao YS, Hsu KY, Shih HN (1998) Analysis of techniques for video-assisted thoracoscopic internal fixation of the spine. Arch Orthop Trauma Surg 117:92–95

    Article  CAS  PubMed  Google Scholar 

  14. Kanayama M, Ng JT, Cunningham BW, Abumi K, Kaneda K, McAfee PC (1999) Biomechanical analysis of anterior versus circumferential spinal reconstruction for various anatomic stages of tumor lesions. Spine 24:445–450

    Article  CAS  PubMed  Google Scholar 

  15. Kotani Y, Cunningham BW, Parker L, Kanayama M, McAfee P (1999) Static and fatigue biomechanical properties of anterior thoracolumbar instrumentation systems using a synthetic model. Spine 14:1406–1413

    Article  Google Scholar 

  16. Mack MJ, Regan JJ, McAfee PC, Picetti G, Ben-Yishay A, Acuff TE (1995) Video-assisted thoracic surgery for the anterior approach to the thoracic spine. Ann Thorac Surg 59:1100–1106

    CAS  PubMed  Google Scholar 

  17. Mayer HM (2000) Minimally invasive spine surgery. A surgical manual. Springer, Berlin Heidelberg New York

  18. Oda I, Cunningham BW, Abumi K, Kaneda K, McAfee P (1999) The stability of reconstruction methods after thoracolumbar total spondylectomy—an in vitro investigation. Spine 24:1634–1638

    Article  CAS  PubMed  Google Scholar 

  19. Panjabi MM (1992) The stabilizing system of the spine. I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5:383–389; 397

    CAS  PubMed  Google Scholar 

  20. Panjabi MM (1992) The stabilizing system of the spine. II. Neutral zone and instability hypothesis. J Spinal Disord 5:390–397

    PubMed  Google Scholar 

  21. Potulski M, Beisse R, Buhren V (1999) Die thorakoskopisch gesteuerte Behandlung der “vorderen Säule”—Technik und Ergebnisse. Orthopade 28:723–730

    Article  CAS  PubMed  Google Scholar 

  22. Regan JJ, Guyer RD (1997) Endoscopic techniques in spinal surgery. Clin Orthop 335:122–139

    PubMed  Google Scholar 

  23. Regan JJ, Mack MJ, Picetti GD 3rd (1995) A technical report on video-assisted thoracoscopy in thoracic spinal surgery. Preliminary description. Spine 20:831–837

    CAS  PubMed  Google Scholar 

  24. Regan JJ, Ben-Yishay A, Mack MJ (1998) Video-assisted thoracoscopic excision of herniated thoracic disc: description of technique and preliminary experience in the first 29 cases. J Spinal Disord 11:183–191

    CAS  PubMed  Google Scholar 

  25. Schultheiss M, Hartwig E, Wilke HJ, Neller S, Claes L, Kinzl L (2000) Biomechanical aspects of anterior instrumentation in thoracoscopic spine surgery. In: Mayer HM (ed) Minimally invasive spine surgery. A surgical manual. Springer, Berlin Heidelberg New York

  26. Schultheiss M, Hartwig E, Kinzl L, Claes L, Wilke HJ (2003) Axial compression force measurement acting across the strut graft in thoracolumbar instrumentation testing. Clin Biomech 18(7):631–636

    Article  Google Scholar 

  27. Shono Y, McAfee PC, Cunningham BW (1994) Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems. Spine 19:1711–1722

    CAS  PubMed  Google Scholar 

  28. Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97

    CAS  PubMed  Google Scholar 

  29. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    CAS  PubMed  Google Scholar 

  30. Zdeblick TA, Warden KE, Zou D, McAfee PC, Abitbol JJ (1993) Anterior spinal fixators. A biomechanical in vitro study. Spine 18:513–517

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Wilke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultheiss, M., Hartwig, E., Claes, L. et al. Influence of screw-cement enhancement on the stability of anterior thoracolumbar fracture stabilization with circumferential instability. Eur Spine J 13, 598–604 (2004). https://doi.org/10.1007/s00586-004-0674-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-004-0674-8

Keywords

Navigation