Skip to main content
Log in

On Regularity for the 3D MHD Equations via One Directional Derivative of the Pressure

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

This work establishes a new regularity criterion for the 3D incompressible MHD equations in term of one directional derivative of the pressure (i.e., \(\partial _{3}P\)) on framework of the anisotropic Lebesgue spaces. More precisely, it is proved that for \(T>0\), if \(\partial _{3}P\in L^{\beta }(0,T; L^{\alpha }(\mathbb {R}^{2}_{x_{1}x_{2}};L^{\gamma }(\mathbb {R}_{x_{3}})))\) with \(\frac{2}{\beta }+\frac{1}{\gamma }+\frac{2}{\alpha }=k\in [2,3)\) and \(\frac{3}{k}\le \gamma \le \alpha \le \frac{1}{k-2},\) then the corresponding solution (ub) to the 3D MHD equations is regular on [0, T].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agapito, R., Schonbek, M.: Non-uniform decay of MHD equations with and without magnetic diffusion. Commun. Partial Differ. Equ. 32, 1791–1812 (2007)

    Article  MathSciNet  Google Scholar 

  • Beirão da Veiga, H.: A new regularity class for the Navier–Stokes equations in \(R^n\). Chin. Ann. Math. 16, 407–412 (1995)

    MATH  Google Scholar 

  • Berselli, L.C., Galdi, G.P.: Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations. Proc. Am. Math. Soc. 130, 3585–3595 (2002)

    Article  MathSciNet  Google Scholar 

  • Caflisch, R., Klapper, I., Steele, G.: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 184, 443–455 (1997)

    Article  MathSciNet  Google Scholar 

  • Cao, C.: Sufficient conditions for the regularity to the 3D Navier–Stokes equations. Discrete Contin. Dyn. Syst. 26, 1141–1151 (2010)

    Article  MathSciNet  Google Scholar 

  • Cao, C., Wu, J.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248, 2263–2274 (2010)

    Article  MathSciNet  Google Scholar 

  • Chae, D.: On the regularity conditions for the Navier–Stokes and related equations. Rev. Mat. Iberoam. 23, 371–384 (2007)

    Article  MathSciNet  Google Scholar 

  • Chae, D., Lee, J.: Regularity criterion in terms of pressure for the Navier–Stokes equations. Nonlinear Anal. Ser. A Theory Methods 46, 727–735 (2001)

    Article  MathSciNet  Google Scholar 

  • Córdoba, D., Marliani, C.: Evolution of current sheets and regularity of ideal incompressible magnetic fluids in 2D. Commun. Pure Appl. Math. 53, 512–524 (2000)

    Article  MathSciNet  Google Scholar 

  • Duvaut, G., Lions, J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)

    Article  Google Scholar 

  • He, C., Wang, Y.: On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238, 1–17 (2007)

    Article  MathSciNet  Google Scholar 

  • He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254 (2005a)

    Article  MathSciNet  Google Scholar 

  • He, C., Xin, Z.: Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J. Funct. Anal. 227, 113–152 (2005b)

    Article  MathSciNet  Google Scholar 

  • Kukavica, I., Ziane, M.: One component regularity for the Navier–Stokes equations. Nonlinearity 19, 453–469 (2006)

    Article  MathSciNet  Google Scholar 

  • Miao, C., Yuan, B.: Well-posedness of the ideal MHD system in critical Besov spaces. Methods Appl. Anal. 13, 89–106 (2006)

    MathSciNet  MATH  Google Scholar 

  • Núñez, M.: Estimates on hyperdiffusive magnetohydrodynamics. Phys. D 183, 293–301 (2003)

    Article  MathSciNet  Google Scholar 

  • Qian, C.: On the global regularity for the 3D magnetohydrodynamics equations involving partial components. J. Math. Fluid Mech. 20, 117–131 (2018)

    Article  MathSciNet  Google Scholar 

  • Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  Google Scholar 

  • Wu, J.: Bounds and new approaches for the 3D MHD equations. J. Nonlinear Sci. 12, 395–413 (2002)

    Article  MathSciNet  Google Scholar 

  • Wu, J.: Generalized MHD equations. J. Differ. Equ. 195, 284–312 (2003)

    Article  MathSciNet  Google Scholar 

  • Wu, J.: Regularity results for weak solutions of the 3D MHD equations. Discrete Contin. Dyn. Syst. 10, 543–556 (2004)

    Article  MathSciNet  Google Scholar 

  • Wu, J.: Regularity criteria for the generalized MHD equations. Commun. Partial Differ. Equ. 33, 285–306 (2008)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.: Regularity criteria in terms of pressure for the 3-D Navier–Stokes equations in a generic domain. Math. Ann. 328, 173–192 (2004)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. H. Poincaré Anal. Non Linear Analysis 24, 491–505 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank to his supervisor Prof. Song Jiang for many helpful suggestions. He also would like to acknowledge his sincere thanks to the editor and the referees for a careful reading of the work and many valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (11401202).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q. On Regularity for the 3D MHD Equations via One Directional Derivative of the Pressure. Bull Braz Math Soc, New Series 51, 157–167 (2020). https://doi.org/10.1007/s00574-019-00148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-019-00148-x

Keywords

Mathematics Subject Classification

Navigation