Skip to main content
Log in

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

To the memory of Marco Brunella.

Abstract

In this paper we aim at the description of foliations having tangent sheaf T F with c 1 (T F) = c 2(T F) = 0 on non-uniruled projective manifolds. We prove that the universal covering of the ambient manifold splits as a product, and that the Zariski closure of a general leaf of F is an Abelian variety. It turns out that the analytic type of the Zariski closures of leaves may vary from leaf to leaf. We discuss how this variation is related to arithmetic properties of the tangent sheaf of the foliation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Amoros, M. Manjarin and M. Nicolau. Deformations of Kähler manifolds with non vanishing holomorphic vector fields. J. Eur. Math. Soc. (JEMS), 14(4) (2012), 997–1040.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Apte. Sur certaines classes caractéristiques des variétés Kähleriennes compactes. C.R. Acad. Sci. Paris, 240 (1955), 149–151.

    MATH  MathSciNet  Google Scholar 

  3. A. Beauville. Complex manifolds with split tangent bundle. Complex analysis and algebraic geometry, 61–70, de Gruyter, Berlin (2000).

    Google Scholar 

  4. J.-B. Bost. Algebraic leaves of algebraic foliations over number fields. Publ.Math. Inst. Hautes Études Sci., 93 (2001), 161–221.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Boucksom, J.-P. Demailly, M. Paun and T. Peternell. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom., 22(2) (2013), 201–248.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Brenner. On a problem of Miyaoka. Number fields and function fields — two parallel worlds, 51–59, Progr. Math., 239, Birkhäuser Boston, Boston, MA (2005).

    Chapter  Google Scholar 

  7. M. Brunella, J.V. Pereira and F. Touzet. Kähler manifolds with split tangent bundle. Bull. Soc. Math. France, 134(2) (2006), 241–252.

    MATH  MathSciNet  Google Scholar 

  8. M. Brunella. Uniformisation of foliations by curves. Holomorphic dynamical systems, 105–163, Lecture Notes in Math., 1998, Springer, Berlin (2010).

    Chapter  Google Scholar 

  9. F. Campana. Remarques sur le revêtement universel des variétés kählériennes compactes. Bull. Soc. Math. France, 122(2) (1994), 255–284.

    MATH  MathSciNet  Google Scholar 

  10. F. Campana and T. Peternell. Geometric stability of the cotangent bundle and the universal cover of a projective manifold (with an appendix by Matei Toma). Bull. Soc. Math. France, 139 (2011), 41–74.

    MATH  MathSciNet  Google Scholar 

  11. F. Campana, B. Claudon and P. Eyssidieux. Représentations linéaires des groupes kählériens: Factorisations et conjecture de Shafarevich linéaire, arXiv:1302.5016v2 [math.AG] (2013).

    Google Scholar 

  12. J.-P. Demailly. On the Frobenius integrability of certain holomorphic p-forms. Complex geometry (Göttingen, 2000), 93–98, Springer, Berlin (2002).

    Chapter  Google Scholar 

  13. S.K. Donaldson. Infinite determinants, stable bundles and curvature. Duke Math. J., 54(1) (1987), 231–247.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Ekedahl, N.I. Shepherd-Barron and R.L Taylor. A conjecture on the existence of compact leaves of algebraic foliations, Shepherd-Baron’s homepage.

  15. G. Faltings. Arakelov’s theorem for abelian varieties. Invent. Math., 73(3) (1983), 337–347.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Fujiki. Deformation of uniruled manifolds. Publ. Res. Inst. Math. Sci., 17(2) (1981), 687–702.

    Article  MATH  MathSciNet  Google Scholar 

  17. X. Gómez-Mont. Integrals for holomorphic foliations with singularities having all leaves compact. Ann. Inst. Fourier (Grenoble), 39(2) (1989), 451–458.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Grothendieck. Techniques de construction et théorémes d’existence en géométrie algébrique. IV. Les schémas de Hilbert. Séminaire Bourbaki, Vol. 6, Exp. No. 221, 249–276, Soc. Math. France, Paris (1995).

    Google Scholar 

  19. A. Höring. The structure of uniruled manifolds with split tangent bundle. Osaka J. Math., 45(4) (2008), 1067–1084.

    MATH  MathSciNet  Google Scholar 

  20. N. Jacobson. Lie algebras. Republication of the 1962 original. Dover Publications, Inc., New York (1979).

    Google Scholar 

  21. S. Kobayashi. Differential geometry of complex vector bundles. Publications of the Mathematical Society of Japan, 15. Kanô Memorial Lectures, 5. Princeton University Press and Iwanami Shoten, Tokyo (1987).

    MATH  Google Scholar 

  22. S. Kobayashi. Hyperbolic complex spaces. Grundlehren der Mathematischen Wissenschaften, 318, Springer-Verlag, Berlin, (1998). xiv+471 pp.

    Book  MATH  Google Scholar 

  23. J. Kollár. Shafarevich maps and plurigenera of algebraic varieties. Invent. Math., 113(1) (1993), 177–215.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Kollár. Subadditivity of the Kodaira dimension: fibers of general type. Algebraic geometry, Sendai, 1985, 361–398, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam (1987).

    Google Scholar 

  25. A. Langer. Semistable sheaves in positive characteristic. Ann. of Math. (2), 159(1) (2004), 251–276.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Lieberman. Compactness of the chow scheme: applications to automorphisms and deformations of Kählermanifolds. Fonctions de plusieurs variables complexes, III (Sém. F. Norguet, 1975–77), pp. 140–186, Lecture Notes in Math, 670.

  27. Y. Miyaoka and S. Mori. A numerical criterion for uniruledness. Ann. of Math. (2), 124(1) (1986), 65–69.

    Article  MATH  MathSciNet  Google Scholar 

  28. F. Loray, J. V. Pereira & F. Touzet. Singular foliations with trivial canonical class, arXiv:1107.1538v3.

  29. N.I. Shepherd-Barron. Semi-stability and reduction mod p. Topology, 37(3) (1998), 659–664.

    Article  MATH  MathSciNet  Google Scholar 

  30. F. Touzet. Feuilletages holomorphes de codimension un dont la classe canonique est triviale. Ann. Sci. Éc. Norm. Supér. (4), 41(4) (2008), 655–668.

    MathSciNet  Google Scholar 

  31. F. Touzet. Structure des feuilletages kähleriens en courbure semi-négative. Ann. Fac. Sci. Toulouse Math. (6), 19(3–4) (2010), 86–886.

    MathSciNet  Google Scholar 

  32. K. Zuo. Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of π 1 of compact Kähler manifolds. J. Reine Angew. Math., 472 (1996), 139–156.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Vitório Pereira.

About this article

Cite this article

Pereira, J.V., Touzet, F. Foliations with vanishing Chern classes. Bull Braz Math Soc, New Series 44, 731–754 (2013). https://doi.org/10.1007/s00574-013-0032-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-013-0032-8

Keywords

Mathematical subject classification

Navigation