Skip to main content
Log in

Clonal spore populations in sporocarps of arbuscular mycorrhizal fungi

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Some arbuscular mycorrhizal (AM) fungal species known to form sporocarps (i.e., aggregations of spores) are polyphyletic in two orders, Glomerales and Diversisporales. Spore clusters (sporocarp-like structures) often formed in pot cultures or in vitro conditions are supposed to be clonal populations, while sporocarps in natural habitats with a fungal peridium are morphologically similar to those of epigeous sexual (zygosporic) sporocarps of Endogone species. Thus, in this study, we explored the genetics of sporocarpic spores of two AM fungi with a view to possibilities of clonal or sexual reproduction during sporocarps formation. To examine these possibilities, we investigated single-nucleotide polymorphisms (SNPs) in reduced genomic libraries of spores isolated from sporocarps molecularly identified as Rhizophagus irregularis and Diversispora epigaea. In addition, partial sequences of the MAT locus HD2 gene of R. irregularis were phylogenetically analyzed to determine the nuclear status of the spores. We found that most SNPs were shared among the spores isolated from each sporocarp in both species. Furthermore, all HD2 sequences from spores isolated from three R. irregularis sporocarps were identical. These results indicate that those sporocarps comprise clonal spores. Therefore, sporocarps with clonal spores may have different functions than sexual reproduction, such as massive spore production or spore dispersal via mycophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Berch SM, Fortin JA (1983) Lectotypification of Glomus macrocarpum and proposal of new combinations: Glomus australe, Glomus versiforme, and Glomus tenebrosum (Endogonaceae). Can J Botany 61:2608–2617

    Article  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic fungus itself harbors obligately intracellular bacteria. Appl Environ Microb 62:3005–3010

    Article  CAS  Google Scholar 

  • Błaszkowski J, Czerniawska B, Wubet T, Schäfer T, Buscot F (2008) Glomus irregulare, a new arbuscular mycorrhizal fungus in the Glomeromycota. Mycotaxon 106:247–267

    Google Scholar 

  • Błaszkowski J, Kozłowska A, Niezgoda P, Goto BT, Dalpé Y (2018) A new genus, Oehlia with Oehlia diaphana comb. Nov. and an emended description of Rhizoglomus vesiculiferum comb. Nov in the Glomeromycotina Nova Hedwigia 107:501–518

    Article  Google Scholar 

  • Boedijn KB (1935) The genera Endogone and Sclerocystis in the Netherlands Indies. Bull Jard Bot Buitenzorg 13:503–508

    Google Scholar 

  • Chen ECH, Mathieu S, Hoffrichter A, Ropars J, Dreissig S, Fuchs J, Brachmann A, Corradi N (2020) More filtering on SNP calling does not remove evidence of inter-nucleus recombination in dikaryotic arbuscular mycorrhizal fungi. Front Plant Sci 11:912

    Article  Google Scholar 

  • Chen ECH, Mathieu S, Hoffrichter A, Sedzielewska-Toro K, Peart M, Pelin A, Ndikumana S, Ropars J, Dreissig S, Fuchs J, Brachmann A, Corradi N (2018a) Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. eLife 7:e39813

  • Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, Charron P, St-Onge C, Giorgi J, Krüger M, Marton T, Ropars J, Grigoriev IV, Hainaut M, Henrissat B, Roux C, Martin F, Corradi N (2018b) High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol 220:1161–1171

    Article  CAS  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018c) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  Google Scholar 

  • Daniels BA, Trappe JM (1979) Glomus epigaeus sp. nov., a useful fungus for vesicular-arbuscular mycorrhizal research. Can J Botany 57:539–542

    Article  Google Scholar 

  • Danecek P, Bonfield KJ, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H (2021) Twelve years of SAMtools and BCFtools. GigaScience 10:giab008

  • Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gerdemann JW (1965) Vesicular-arbuscular mycorrhizae formed on maize and tuliptree by Endogone fasciculata. Mycologia 57:562–575

    Article  Google Scholar 

  • Gerdemann JW, Trappe JM (1974) The Endogonaceae in the Pacific Northwest. Mycologia Memoir 5, Massachusetts, USA: The Heffernan Press

  • Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103

    Article  Google Scholar 

  • Janos DP, Sahley CT (1995) Rodent dispersal of vesicular-arbuscular mycorrhizal fungi in Amazonian Peru. Ecology 76:1852–1858

    Article  Google Scholar 

  • Jobin K, Błaszkowski J, Niezgoda P, Kozłowska A, Zubek S, Mleczo P, Chachuła P, Ishikawa NK, Goto BT (2019) New sporocarpic taxa in the phylum Glomeromycota: Sclerocarpum amazonicum gen. et sp. nov. in the family Glomeraceae (Glomerales) and Diversispora sporocarpia sp. nov. in the Diversisporaceae (Diversisporales). Mycol Prog 18:369–384

    Article  Google Scholar 

  • Kokkoris V, Chagnon PL, Yildirir G, Clarke K, Goh D, MacLean AM, Dettman J, Stefani F, Corradi N (2021) Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Curr Biol 31:1531–1538

    Article  CAS  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  Google Scholar 

  • Lee SC, Ni M, Li W, Shertz C, Heitman J (2010) The evolution of Sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 74:298–340

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  • Morin E, Miyauchi S, Clemente HS, Chen EC, Pelin A, de la Providencia I, Ndikumana S, Beaudet D, Hainaut M, Drula E, Kuo A, Tang N, Roy S, Viala J, Henrissat B, Grigoriev IV, Corradi N, Roux C, Martin FM (2019) Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol 222:1584–1598

    Article  CAS  Google Scholar 

  • Omar MB, Bollan L, Heather WA (1979) A permanent mounting medium for fungi. Bull Bri Mycol Soc 13:31–32

    Article  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  Google Scholar 

  • Redecker D, Raab P, Oehl F, Camacho FJ, Courtecuisse R (2007) A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Prog 6:35–44

    Article  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  Google Scholar 

  • Ropars J, Toro KS, Noel J, Pelin A, Charron P, Farinelli L, Marton T, Krüger M, Fuchs J, Brachmann A, Corradi N (2016) Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nature Microbiol 1:16033

    Article  CAS  Google Scholar 

  • Schenck NC, Pérez Y (1990) Manual for the Identification of vesicular-arbuscular mycorrhizal Fungi, 3rd edn. Synergistic Publications, Florida, USA

    Google Scholar 

  • Schüßler A, Krüger M, Walker C (2011) Revealing natural relationships among arbuscular mycorrhizal fungi: culture line BEG47 represents Diversispora epigaea, not Glomus versiforme. PLoS ONE 6:e23333

    Article  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Gloucester, UK

  • Silvani VA, Statello M, Scorza MV, Pérgola M, Colombo RP, Godeas AM (2019) A novel in vitro methodology to cultivate arbuscular mycorrhizal fungi combining soil and synthetic media. Symbiosis 79:163–170

    Article  CAS  Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    Article  CAS  Google Scholar 

  • Suyama Y, Matsuki Y (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next generation sequencing platform. Sci Rep 5:16963

    Article  CAS  Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542

    Article  CAS  Google Scholar 

  • Trappe JM, Maser C (1976) Germination of spores of Glomus macrocarpus (Endogonaceae) after passage through a rodent digestive tract. Mycologia 68:433–436

    Article  Google Scholar 

  • Walker C, Schüßler A, Vincent B, Cranenbrouck S, Declerck S (2021) Anchoring the species Rhizophagus intraradices (formerly Glomus intraradices). Fungal Syst Evol 8:179–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallen RM, Perlin MH (2018) An overview of the function and maintenance of sexual reproduction in dikaryotic fungi. Front Microbiol 9:503

    Article  CAS  Google Scholar 

  • Yamamoto K, Degawa Y, Hirose D, Fukuda M, Yamada A (2015) Morphology and phylogeny of four Endogone species and Sphaerocreas pubescens collected in Japan. Mycol Progress 14:86

    Article  Google Scholar 

  • Yildirir G, Malar CM, Kokkoris V, Corradi N (2020) Parasexual and sexual reproduction in arbuscular mycorrhizal fungi: room for both. Trends Microbiol 28:517–519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Minoru Nakajima for his help in sporocarp sampling. We also thank Enago (www.enago.jp) for English language review.

Funding

This study was supported by JSPS KAKENHI Grant Numbers19K22269 and 19H03281.

Author information

Authors and Affiliations

Authors

Contributions

M.Y. and T.O. designed the study. M.Y. and K.Y. collected sporocarp samples and conducted morphological analysis. M.Y. and H.Y. performed DNA sequencing of SSU-ITS-LSU rDNA and MIG-seq. T.M. analyzed MIG-seq data, and R.K. performed statistical analysis on SNPs data. M.Y. wrote the manuscript, and T.M., K.Y., and T.O. contributed to revisions. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Masahide Yamato.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1115 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamato, M., Yamada, H., Maeda, T. et al. Clonal spore populations in sporocarps of arbuscular mycorrhizal fungi. Mycorrhiza 32, 373–385 (2022). https://doi.org/10.1007/s00572-022-01086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-022-01086-1

Keywords

Navigation