Skip to main content
Log in

Antifungal genes expressed in transgenic pea (Pisum sativum L.) do not affect root colonization of arbuscular mycorrhizae fungi

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Genetically modified crops have raised concerns about unintended consequences on non-target organisms including beneficial soil associates. Pea transformed with four antifungal genes 1-3 β glucanase, endochitinase, polygalacturonase-inhibiting proteins, and stilbene synthase is currently under field-testing for efficacy against fungal diseases in Canada. Transgenes had lower expression in the roots than leaves in greenhouse experiment. To determine the impact of disease-tolerant pea or gene products on colonization by non-target arbuscular mycorrhizae and nodulation by rhizobium, a field trial was established. Transgene insertion, as single gene or stacked genes, did not alter root colonization by arbuscular mycorrhiza fungus (AMF) or root nodulation by rhizobium inoculation in the field. We found no effect of transgenes on the plant growth and performance although, having a dual inoculant with both AMF and rhizobium yielded higher fresh weight shoot-to-root ratio in all the lines tested. This initial risk assessment of transgenic peas expressing antifungal genes showed no deleterious effect on non-target organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht C, Geurts R, Bisseling T (1999) Legume nodulation and mycorrhizae formation: two extremes in host specificity meet. EMBO J 2:281

    Article  Google Scholar 

  • Amian AA, Papenbrock J, Jacobsen H, Hassan F (2011) Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crops 2(2):1–6

    Article  Google Scholar 

  • Andrews M (1993) Nitrogen effects on the partitioning of dry matter between shoot and root of higher plants. Curr Topics Plant Physiol 1:119–126

    Google Scholar 

  • Andrews M, Sprent JI, Raven JA, Eady PE (1999) Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies. Plant Cell and Environ 22:949–958

    Article  CAS  Google Scholar 

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and rhizobium meliloti strains, and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytol 117(3):399–404. doi:10.1111/j.1469-8137.1991.tb00003.x

    Article  Google Scholar 

  • Balestrini R, Bonfante P (2005) The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosyst 139(1):8–15

    Article  Google Scholar 

  • Ballhorn DJ, Schädler M, Elias JD, Millar JA, Kautz S (2016) Friend or foe—light availability determines the relationship between mycorrhizal fungi, rhizobia and lima bean (Phaseolus lunatus L.) PLoS One 11(5):e0154116

    Article  PubMed  PubMed Central  Google Scholar 

  • Birch ANE, Griffiths BS, Caul S, Thompson J, Heckmann LH, Krogh PH, Cortet J (2007) The role of laboratory, glasshouse and field scale experiments in understanding the interactions between genetically modified crops and soil ecosystems: a review of the ECOGEN project. Pedobiologia 51(3):251–260

    Article  CAS  Google Scholar 

  • Bødker L, Kjøller R, Rosendahl S (1998) Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8(3):169–174

    Article  Google Scholar 

  • CFIA (2014) Novelty and plants with novel traits. Canadian food inspection agency. http://www.inspection.gc.ca/plants/plants-with-novel-traits/general-public/novelty/eng/1338181110010/1338181243773. Accessed 15 December 2016

  • Conner AJ, Glare TR, Nap J (2003) The release of genetically modified crops into the environment. The Plant J 33(1):19–46

    Article  PubMed  Google Scholar 

  • Dai M, Bainard LD, Hamel C, Gan Y, Lynch D (2013) Impact of land use on arbuscular mycorrhizal fungal communities in rural Canada. Appl Environ Microbiol 79(21):6719–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20(6):567–574

    Article  CAS  PubMed  Google Scholar 

  • Daxinger L, Hunter B, Sheikh M, Jauvion V, Gasciolli V, Vaucheret H, Matzke M, Furner I (2008) Unexpected silencing effects from T-DNA tags in Arabidopsis. Trends Plant Sci. 13(1):4-6. doi:doi:10.1016/j.tplants.2007.10.007

  • De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol 39(1):313–335

    Article  CAS  PubMed  Google Scholar 

  • Devos Y, Álvarez-Alfageme F, Gennaro A, Mestdagh S (2016) Assessment of unanticipated unintended effects of genetically modified plants on non-target organisms: a controversy worthy of pursuit? J Appl Entomol 140(1–2):1–10

    Article  Google Scholar 

  • Dietz-Pfeilstetter A (2010) Stability of transgene expression as a challenge for genetic engineering. Plant Sci 179(3):164–167. doi:10.1016/j.plantsci.2010.04.015

    Article  CAS  Google Scholar 

  • Djordjevic MA, Gabriel DW, Rolfe BG (1987) Rhizobium—the refined parasite of legumes. Annu Rev Phytopathol 25(1):145–168

    Article  Google Scholar 

  • Ferrer A, Arró M, Manzano D, Altabella T (2016) Strategies and methodologies for the co-expression of multiple proteins in plants. Pages 263-285 in advanced technologies for protein complex production and characterization. Adv Exp Med Biol 896:263–285. doi:10.1007/978-3-319-27216-0_17

    Article  PubMed  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back. Nature biotech 12(9):883–888. doi:10.1038/nbt0994-883

    Article  Google Scholar 

  • Foo E, McAdam EL, Weller JL, Reid JB (2016) Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. J Exp Bot 67(8):2413–2424. doi:10.1093/jxb/erw047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Alonso M, Hendley P, Bigler F, Mayeregger E, Parker R, Rubinstein C, Satorre E, Solari F, McLean MA (2014) Transportability of confined field trial data for environmental risk assessment of genetically engineered plants: a conceptual framework. Transgenic Res 23(6):1025–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geneva M, Zehirov G, Djonova E, Kaloyanova N, Georgiev G, Stancheva I (2006) The effect of inoculation of pea plants with mycorrhizal fungi and rhizobium on nitrogen and phosphorus assimilation. Plant Soil and Environ 52(10):435–440

    CAS  Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8(10):1871–1883. doi:10.1105/tpc.8.10.1871

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C (2010) Fungal spore germination and pre-symbiotic mycelial growth–physiological and genetic aspects. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: Physiology and function. Springer Netherlands pp 3–32

  • Girlanda M, Bianciotto V, Cappellazzo GA, Casieri L, Bergero R, Martino E, Luppi AM, Perotto S (2008) Interactions between engineered tomato plants expressing antifungal enzymes and nontarget fungi in the rhizosphere and phyllosphere. FEMS Microbiol Lett 288(1):9–18. doi:10.1111/j.1574-6968.2008.01306.x

    Article  CAS  PubMed  Google Scholar 

  • Hannula S, De Boer W, Van Veen J (2014) Do genetic modifications in crops affect soil fungi? A review. Biol Fertility Soils 50(3):1–14

  • Hassan F, Kiesecker H, Jacobsen H, Meens J (2009) A family 19 chitinase (Chit30) from streptomyces olivaceoviridis ATCC 11238 expressed in transgenic pea affects the development of T. harzianum in vitro [electronic resource]. J Biotechnol 143(4):302–308

    Article  CAS  PubMed  Google Scholar 

  • Hassan F, Müller A, Jacobsen HJ (2010) Gene stacking of antifungal genes in transgenic pea to enhance the level of resistance. In Vitro Cell Dev Biol Anim 46(Suppl 1):1. doi:10.1007/s11626-010-9338-7

    Google Scholar 

  • Hassan F, Noorian MS, Jacobsen HJ (2012) Effect of antifungal genes expressed in transgenic pea (Pisum sativum L.) on root colonization with Glomus intraradices. GM Food & Crop 3(4):301–309

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse M, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423. doi:10.1111/nph.13288

    Article  PubMed  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the rhizobium–legume symbiosis. Fungal Genet and Biol 23(3):205–212. doi:10.1006/fgbi.1998.1046

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) NewAgrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2(4):208–218

    Article  CAS  Google Scholar 

  • Ide Franzini V, Azcón R, Latanze Mendes F, Aroca R (2010) Interactions between Glomus species and rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol 167(8):614–619. doi:10.1016/j.jplph.2009.11.010

    Article  Google Scholar 

  • Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke AJ (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9(8):1251–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ISAAA. 2016. Global status of commercialized biotech/GM crops: 2016. ISAAA brief no. 52. ISAAA: Ithaca, NY. ISBN: 978-1-892456-66-4

  • ISAAA. 2017 ISAAA’s GM Approval Database (2017) http://www.isaaa.org/gmapprovaldatabase/

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  • Jeandet P, Douillet-Breuil A, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50(10):2731–2741

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Germida JJ, Walley FL. (2013) Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungi colonization in pot-cultured field pea (Pisum sativum L.). Mycorrhiza. Jan 1; 23(1):45–59.

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236(4806):1299–1302. doi:10.1126/science.236.4806.1299

    Article  CAS  PubMed  Google Scholar 

  • Khan MH, Meghvansi M, Panwar V, Gogoi H, Singh L (2010) Arbuscular mycorrhizal fungi-induced signalling in plant defence against phytopathogens. J Phytol 2(7):53–69

    Google Scholar 

  • Kohli A, Miro B, Twyman RM (2010). Transgene integration, expression and stability in plants: strategies for improvements. In Kole C, Michler C, Abbott A, Hall T (eds) Transgenic crop plants Springer Berlin Heidelberg pp. 201–237

  • Ladics GS, Bartholomaeus A, Bregitzer P, Doerrer NG, Gray A, Holzhauser T, Jordan M, Keese P, Kok E, Macdonald P, Parrott W (2015) Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res 24(4):587–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the vitaceae as a response to infection or injury. Physiol Plant Pathol 9(1):77–86. doi:10.1016/0048-4059(76)90077-1

    Article  CAS  Google Scholar 

  • Liu W (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ecotoxicology 19(2):229–238. doi:10.1007/s10646-009-0423-1

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50(3):529–544

    Article  CAS  PubMed  Google Scholar 

  • Long SR (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56(2):203–214. doi:10.1016/0092-8674(89)90893-3

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Clayton GW, Rice WA (2006) Rhizobial inoculants for legume crops. Journal Crop Improvement 15(2):289–321

    Article  Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Masoud SA, Zhu Q, Lamb C, Dixon RA (1996) Constitutive expression of an inducible β-1, 3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f. spmedicaginis, but does not reduce disease severity of chitin-containing fungi. Transgenic Res 5(5):313–323

    Article  CAS  Google Scholar 

  • Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1(2):142–148

    Article  CAS  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115(3):495–501

    Article  Google Scholar 

  • Meyer JB, Song-Wilson Y, Foetzki A, Luginbühl C, Winzeler M, Kneubühler Y, Matasci C, Mascher-Frutschi F, Kalinina O, Boller T et al (2013) Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi? PLoS One 8(1):e53825. doi:10.1371/journal.pone.0053825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minic Z, Brown S, De Kouchkovsky Y, Schultze M, Staehelin C (1998) Purification and characterization of a novel chitinase-lysozyme, of another chitinase, both hydrolysing rhizobium meliloti nod factors, and of a pathogenesis-related protein from Medicago sativa roots. Biochem J 332(Pt 2):329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40(5):1019–1027. doi:10.1016/j.soilbio.2007.11.014

    Article  CAS  Google Scholar 

  • Murakami T, Anzai H, Imai S, Satoh A, Nagaoka K, Thompson CJ (1986) The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol Gen Genet MGG 205(1):42–53

    Article  CAS  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7(7):869–885. doi:10.1105/tpc.7.7.869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15(4):369–372

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775

    Article  CAS  PubMed  Google Scholar 

  • Pitet M, Camprubí A, Calvet C, Estaún V (2009) A modified staining technique for arbuscular mycorrhiza compatible with molecular probes. Mycorrhiza 19(2):125–131. doi:10.1007/s00572-008-0206-1

    Article  CAS  PubMed  Google Scholar 

  • Powell JR, Swanton CJ, Pauls KP, Klironomos JN, Trevors JT, Dunfield KE, Hart MM, Gulden RH, Levy-Booth D, Campbell RG (2007) Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans [electronic resource]. Appl Environ Microbiol AEM 73(13):4365–4367 http://aem.asm.org/contents-by-date.0.shtml

    Article  CAS  Google Scholar 

  • Qu LQ, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2(2):113–125

    Article  CAS  Google Scholar 

  • Redecker D, Von Berswordt-Wallrabe P, Beck DP, Werner D (1997) Influence of inoculation with arbuscular mycorrhizal fungi on stable isotopes of nitrogen in Phaseolus vulgaris. Biol Fertil Soils 24(3):344–346. doi:10.1007/s003740050255

    Article  CAS  Google Scholar 

  • van Rhijn P, Fujishige NA, Lim PO, Hirsch AM (2001) Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae. Plant Physiol 126(1):133–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter A, Jacobsen H, De Kathen A, De Lorenzo G, Briviba K, Hain R, Ramsay G, Kiesecker H (2006a) Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Rep 25(11):1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Richter A, Rosner L, Kiesecker H, Jacobsen H- (2006b) Expression of 1,3-ß glucanase in transgenic pea (Pisum sativum L.) to increase the resistance level against phytopathogenic fungi. Mitteilungen-Biologischen Bundesanstalt für Land und Forstwirtschaft (400):358. https://ojs.openagrar.de/index.php/MittBBA/article/viewFile/717/652 or http://www.cabi.org/isc/FullTextPDF/2010/20103140705.pdf

  • SAS Institute Inc. (2014) SAS OnlineDoc 9.4. SAS Institute Inc., Cary

    Google Scholar 

  • Saxena AK, Shende R, Grover M (2006) Interactions among beneficial microorganisms. In Mukerirji KG, Manoharachary C, Singh J (eds) Microbial Activity in the Rhizoshere Springer Berlin Heidelberg pp. 121–137

  • Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins T (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.) Plant Physiol 101(3):751–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schüßler A, Walker C. The Glomeromycota: a species list with new families and new genera published in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Electronic version freely available online at http://www.amf-phylogeny.com. Gloucester. 2010

  • Selatsa AA, Papenbrock J, Hassan F, Jacobsen H (2008) Combination of antifungal genes (chitinase and glucanase) to increase the resistance level of transgenic pea (Pisum sativum L.) against fungal diseases. Competition for Resources in a Changing World-New Drive for Rural Development. Proceeding of Tropentag

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic press, London

    Google Scholar 

  • Stefani F, Hamelin R (2010) Current state of genetically modified plant impact on target and non-target fungi. Env Rev 18(NA):441–475

    Article  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6(9):2519–2523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JG and Blechl A (2015) Recombinase technology for precise genome engineering in advances in new technology for targeted modification of plant genomes. Springer New York pp 113-144

  • Turrini A, Pietrangeli BM, Giovannetti M, Sbrana C, Nuti MP (2004) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266(1–2):69–75

    CAS  Google Scholar 

  • Turrini A, Sbrana C, Giovannetti M (2015) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Res Microbiol 166(3):121–131

    Article  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. doi:10.1146/annurev.phyto.44.070505.143425

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61(8):3031–3034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinert N, Meincke R, Gottwald C, Radl V, Dong X, Schloter M, Berg G, Smalla K (2010) Effects of genetically modified potatoes with increased zeaxanthin content on the abundance and diversity of rhizobacteria with in vitro antagonistic activity do not exceed natural variability among cultivars. Plant Soil 326(1–2):437–452

    Article  CAS  Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290(5499):2088–2093. doi:10.1126/science.290.5499.2088

    Article  CAS  PubMed  Google Scholar 

  • Wróbel-Kwiatkowska M, Turnau K, Góralska K, Anielska T, Szopa J (2012) Effects of genetic modifications to flax (Linum usitatissimum) on arbuscular mycorrhiza and plant performance. Mycorrhiza 22(7):493–499. DOI: 10.1007/s00572-011-0427-6

  • Zhang LY, Cai J, Li RJ, Liu W, Wagner C, Wong KB, Xie ZP, Staehelin C (2016) A single amino acid substitution in a chitinase of the legume Medicago truncatula is sufficient to gain nod-factor hydrolase activity. Open Biol 6(7) doi:10.1098/rsob.160061:10.1098/rsob.160061

Download references

Acknowledgements

We greatly acknowledge Lisa Raatz, Judy Irving, Keith Topinka, graduate students, and summer staff at the weed science and environmental biosafety lab at the University of Alberta for assistance with field trial and Dr. Muhammed Rahman, AFNS, University of Alberta, for conducting the gene expression analysis for the project. We are thankful to Premier Tech Technologies (Riviere-Du-Loup, QC) for generously providing us the dual inoculant MYKE® PRO PS3+R and Dr. Deng-Jin Bing, AAFC, Lacombe, for kindly supplying the seed for AC Earlystar and Agassiz for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagroop Gill Kahlon.

Ethics declarations

Funding

The research fund was provided by the Alberta Crop Industry Development Fund Ltd. (ACIDF) and Alberta Pulse Growers (APG).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahlon, J.G., Jacobsen, HJ., Cahill, J.F. et al. Antifungal genes expressed in transgenic pea (Pisum sativum L.) do not affect root colonization of arbuscular mycorrhizae fungi. Mycorrhiza 27, 683–694 (2017). https://doi.org/10.1007/s00572-017-0781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-017-0781-0

Keywords

Navigation