Skip to main content

Advertisement

Log in

Spatio-temporal dynamics of arbuscular mycorrhizal fungi associated with glomalin-related soil protein and soil enzymes in different managed semiarid steppes

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Temporal and spatial patterns of arbuscular mycorrhizal fungi (AMF) and glomalin and soil enzyme activities were investigated in different managed semiarid steppes located in Inner Mongolia, North China. Soils were sampled in a depth up to 30 cm from non-grazed, overgrazed, and naturally restored steppes from June to September. Roots of Leymus chinense (Trin.) Tzvel. and Stipagrandis P. Smirn. were also collected over the same period. Results showed that overgrazing significantly decreased the total mycorrhizal colonization of S. grandis; total colonization of L. chinensis roots was not significantly different in the three managed steppes. Nineteen AMF species belonging to six genera were isolated. Funneliformis and Glomus were dominant genera in all three steppes. Spore density and species richness were mainly influenced by an interaction between plant growth stage and management system (P < 0.001). Spore densities were higher in 0–10-cm soil depth. AMF species richness was significantly positively correlated with soil acid phosphatase activity, alkaline phosphatase activity, and two Bradford-reactive soil protein (BRSP) fractions (P < 0.01). It is concluded that the dynamics of AMF have highly temporal and spatial patterns that are related to soil glomalin and phosphatase activity in different managed semiarid steppes. Based on these observations, AMF communities could be useful indicators for evaluating soil quality and function of semiarid grassland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera P, Borie F, Seguel A, Cornejo P (2011) Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biol Biochem 43:2427–2431

    Article  CAS  Google Scholar 

  • Ba L, Ning J, Wang D, Facelli E, Facelli JM, Yang Y, Zhang L (2012) The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant Soil 352:143–156

    Article  CAS  Google Scholar 

  • Bai C, He X, Tang H, Shan B, Zhao L (2009) Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China. Soil Biol Biochem 41:941–947

    Article  CAS  Google Scholar 

  • Bai G, Bao Y, Du G, Qi Y (2012) Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem. Mycorrhiza 23:289–301

    Article  PubMed  Google Scholar 

  • Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98:745–753

    Article  Google Scholar 

  • Binet M, Sage L, Malan C, Clément J, Redecker D, Wipf D, Geremia R, Lavorel S, Mouhamadou B (2013) Effects of mowing on fungal endophytes and arbuscular mycorrhizal fungi in subalpine grasslands. Fungal Ecol 6:248–255

    Article  Google Scholar 

  • Birhane E, Kuyper TW, Sterck FJ, Bongers F (2010) Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia. For Ecol Manag 260:2160–2169

    Article  Google Scholar 

  • Bonfim J, Vasconcellos R, Stürmer S, Cardoso E (2013) Arbuscular mycorrhizal fungi in the Brazilian Atlantic forest: a gradient of environmental restoration. Appl Soil Ecol 71:7–14

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brookes P, Landman A, Pruden G, Jenkinson D (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Hu J, Lin X, Yang A, Wang R, Zhang J, Wong MH (2013) Arbuscular mycorrhizal fungal diversity, external mycelium length, and glomalin-related soil protein content in response to long-term fertilizer management. J Soils Sediments 13:1–11

    Article  CAS  Google Scholar 

  • Das SK, Varma A (2011) Role of enzymes in maintaining soil health. In: Shukla G, Varma A (eds) Soil enzymology. Springer-Verlag, Berlin, pp 25–42

    Google Scholar 

  • David PJ, Sara G, Bray B (2008) Glomalin extraction and measurement. Soil Biol Biochem 40(3):728–739

    Article  Google Scholar 

  • Davinic M, Fultz LM, Acosta-Martinez V, Calderón FJ, Cox SB, Dowd SE, Allen VG, Zak JC, Moore-Kucera J (2012) Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biol Biochem 46:63–72

    Article  CAS  Google Scholar 

  • Daynes CN, Field DJ, Saleeba JA, Cole MA, McGee PA (2012) Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots. Soil Biol Biochem 57:683–694

    Article  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106

    Article  CAS  Google Scholar 

  • Emran M, Gispert M, Pardini G (2012) Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. Eur J Soil Sci 63:637–649

    Article  CAS  Google Scholar 

  • Endlweber K, Scheu S (2006) Establishing arbuscular mycorrhiza-free soil: a comparison of six methods and their effects on nutrient mobilization. Appl Soil Ecol 34:276–279

    Article  Google Scholar 

  • Estrada B, Beltrán-Hermoso M, Palenzuela J, Iwase K, Ruiz-Lozano JM, Barea JM, Oehl F (2013) Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. J Arid Environ 97:170–175

    Article  Google Scholar 

  • Ferrol N, Calvente R, Cano C, Barea JM, Azcón-Aguilar C (2004) Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Appl Soil Ecol 25:123–133

    Article  Google Scholar 

  • Gadkar V, Rillig MC (2006) The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263:93–101

    Article  CAS  PubMed  Google Scholar 

  • García I, Mendoza R, Pomar MC (2012) Arbuscular mycorrhizal symbiosis and dark septate endophytes under contrasting grazing modes in the Magellanic steppe of Tierra del Fuego. Agric Ecosyst Environ 155:194–201

    Article  Google Scholar 

  • Gerdemann JW, Trappe JM (1974) The Endogonaceae in the Pacific Northwest. Mycol Mem 5:1–76

    Google Scholar 

  • Gillespie AW, Farrell RE, Walley FL, Ross ARS, Leinweber P, Eckhardt K-U, Regier TZ, Blyth RIR (2011) Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biol Biochem 43:766–777

    Article  CAS  Google Scholar 

  • Gispert M, Emran M, Pardini G, Doni S, Ceccanti B (2013) The impact of land management and abandonment on soil enzymatic activity, glomalin content and aggregate stability. Geoderma 202–203:51–61

    Article  Google Scholar 

  • Gómez-Paccard C, Mariscal-Sancho I, León P, Benito M, González P, Ordóñez R, Espejo R, Hontoria C (2013) Ca-amendment and tillage: medium term synergies for improving key soil properties of acid soils. Soil Tillage Res 134:195–206

    Article  Google Scholar 

  • González-Cortés J, Vega-Fraga M, Varela-Fregoso L, Martínez-Trujillo M, Carreón-Abud Y, Gavito M (2012) Arbuscular mycorrhizal fungal (AMF) communities and land use change: the conversion of temperate forests to avocado plantations and maize fields in central Mexico. Fungal Ecol 5:16–23

    Article  Google Scholar 

  • Guo Y-J, Han J-G (2008) Soil biochemical properties and arbuscular mycorrhizal fungi as affected by afforestation of rangelands in northern China. J Arid Environ 72:1690–1697

    Article  Google Scholar 

  • He N, Yu Q, Wu L, Wang Y, Han X (2008) Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biol Biochem 40(12):2952–2959

    Article  CAS  Google Scholar 

  • He X, Li Y, Zhao L (2010) Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biol Biochem 42:1313–1319

    Article  CAS  Google Scholar 

  • Hoffmann G, Teicher K (1961) Ein kolorimetrisches Verfahren zur Bestimmung der Ureaseaktivität in Böden. Z Pflanzenernähr Düng Bodenkd 95:55–63

    Article  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. 2nd edn. World Soil Resources Reports No. 103. FAO, Rome. http://www.fao.org/ag/agl/agll/wrb/doc/wrb2006final.pdf. ISBN-92-5-105511-4

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Joergensen RG (2010) Organic matter and micro-organisms in tropical soils. In: Dion P (ed) Soil biology and agriculture in the tropics. Soil Biology 21, 17–44

  • Koske R, Tessier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Am Newsl 34:59

    Google Scholar 

  • Li Y, He X, Zhao L (2010) Tempo-spatial dynamics of arbuscular mycorrhizal fungi under clonal plant Psammochloa villosa Trin. Bor in Mu Us sandland. Eur J Soil Biol 46:295–301

    Article  Google Scholar 

  • Li Y, Zhou X, Brandle JR, Zhang T, Chen Y, Han J (2012) Temporal progress in improving carbon and nitrogen storage by grazing exclosure practice in a degraded land area of China's Horqin Sandy Grassland. Agric Ecosyst Environ 159:55–61

    Article  CAS  Google Scholar 

  • Liu Y, Pan Q, Liu H, Bai Y, Simmons M, Dittert K, Han X (2011) Plant responses following grazing removal at different stocking rates in an Inner Mongolia grassland ecosystem. Plant Soil 340:199–213

    Article  CAS  Google Scholar 

  • McGonigle T, Miller M, Evans D, Fairchild G, Swan J (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Meier S, Borie F, Curaqueo G, Bolan N, Cornejo P (2012) Effects of arbuscular mycorrhizal inoculation on metallophyte and agricultural plants growing at increasing copper levels. Appl Soil Ecol 61:280–287

    Article  Google Scholar 

  • Michalis O, Ioannides IM, Ehaliotis C (2013) Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improved colonization and plant response under water stress only. Appl Soil Ecol 63:112–119

    Article  Google Scholar 

  • Montero Sommerfeld H, Díaz L, Alvarez M, Añazco Villanueva C, Matus F, Boon N, Boeckx P, Huygens D (2013) High winter diversity of arbuscular mycorrhizal fungal communities in shallow and deep grasslands soils. Soil Biol Biochem 65:236–244

    Article  CAS  Google Scholar 

  • Morton JB (1995) Taxonomic and phylogenetic divergence among five Scutellospora species based on comparative developmental sequences. Mycologia 87:127–137

    Article  Google Scholar 

  • Mulvaney R, Khan S (2001) Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Sci Soc Am J 65:1284–1292

    Article  CAS  Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959

    Article  CAS  PubMed  Google Scholar 

  • Ohsowski BM, Klironomos JN, Dunfield KE, Hart MM (2012) The potential of soil amendments for restoring severely disturbed grasslands. Appl Soil Ecol 60:77–83

    Article  Google Scholar 

  • Olsen SR, Cole C, Watanabe FS, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate, vol 939. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Prasad K, Aggarwal A, Yadav K, Tanwar A (2012) Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonasfluorescens on Chrysanthemum indicum L. J Soil Sci Plant Nutr 12:451–462

    Google Scholar 

  • Ramos-Zapata JA, Zapata-Trujillo R, Ortíz-Díaz JJ, Guadarrama P (2011) Arbuscular mycorrhizas in a tropical coastal dune system in Yucatan, Mexico. Fungal Ecol 4:256–261

    Article  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rowell DL (1994) Soil science: methods and applications. Longman Group Limited, Longman Scientific & Technical, London

    Google Scholar 

  • Sánchez-Castro I, Ferrol N, Cornejo P, Barea J-M (2012) Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza 22:449–460

    Article  PubMed  Google Scholar 

  • Schenck NC, Pérez Y (1990) Manual for the identification of VA mycorrhizal fungi, 3rd edn. Synergistic Publications, Gainsville

    Google Scholar 

  • Schindler FV, Mercer EJ, Rice JA (2007) Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem 39:320–329

    Article  CAS  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Edinburgh & Kew, UK: The Royal Botanic Garden; Munich, Germany: Botanische Staatssammlung Munich; Oregon, USA: Oregon State University. http://www.amf-phylogeny.com. ISBN-13: 978-1466388048; ISBN-10: 1466388048

  • Seguel A, Cumming JR, Klugh-Stewart K, Cornejo P, Borie F (2013) The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23:167–183

    Article  CAS  PubMed  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Illinois

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press Ltd, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier Academic, New York

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Su YY, Guo LD (2007) Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza 17:689–693

    Article  PubMed  Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) Canoco reference manual and cano draw for windows user's guide: software for canonical ordination (version 4.5). Microcomputer Power, New York

    Google Scholar 

  • Tian H, Gai J, Zhang J, Christie P, Li X (2009) Arbuscular mycorrhizal fungi in degraded typical steppe of inner Mongolia. Land Degrad Dev 20:41–54

    Article  Google Scholar 

  • Tian H, Drijber R, Niu X, Zhang J, Li X (2011) Spatio-temporal dynamics of an indigenous arbuscular mycorrhizal fungal community in an intensively managed maize agroecosystem in North China. Appl Soil Ecol 47:141–152

    Article  Google Scholar 

  • Treseder KK (2005) Nutrient acquisition strategies of fungi and their relation to elevated atmospheric CO2. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Florida, pp 713–731

    Chapter  Google Scholar 

  • Treseder KK, Tnrner KM, Mack MC (2007) Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Glob Chang Biol 13:78–88

    Article  Google Scholar 

  • Vaidya GS, Rillig M, Wallander H (2011) The role of glomalin in soil erosion. Sci World 9:82–85

    Article  Google Scholar 

  • Vance E, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Verbruggen E, Van Der Heijden MG, Weedon JT, Kowalchuk GA, Röling WF (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21:2341–2353

    Article  PubMed  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vodnik D, Grčman H, Maček I, van Elteren JT, Kovačevič M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136

    Article  CAS  PubMed  Google Scholar 

  • Witt GB, Noël MV, Bird MI, Beeton R, Menzies NW (2011) Carbon sequestration and biodiversity restoration potential of semi-arid mulga lands of Australia interpreted from long-term grazing exclosures. Agric Ecosyst Environ 141:108–118

    Article  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Wu J, Joergensen R, Pommerening B, Chaussod R, Brookes P (1990) Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Wu Z, McGrouther K, Huang J, Wu P, Wu W, Wang H (2013) Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment. Soil Biol Biochem 68:283–290

    Article  Google Scholar 

  • Zhao LP, Jiang Y (1986) Research of determination of soil phosphatase activity. Chin J Soil Sci 17:138–141

    CAS  Google Scholar 

  • Zhou LK (1987) Soil enzymology. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Zhou Z, Sun O, Huang J, Gao Y, Han X (2006) Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Funct Ecol 20:753–762

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Natural Science Foundation of China (Project No. 30760157) and the Key Science Research Project of Inner Mongolia Autonomous Region (Project No. 200711020503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Bao, Y., Liu, X. et al. Spatio-temporal dynamics of arbuscular mycorrhizal fungi associated with glomalin-related soil protein and soil enzymes in different managed semiarid steppes. Mycorrhiza 24, 525–538 (2014). https://doi.org/10.1007/s00572-014-0572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0572-9

Keywords

Navigation