Skip to main content
Log in

Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

During the last decade, the application of arbuscular mycorrhizal fungi (AMF) as bioenhancers has increased significantly. However, until now, it has been difficult to verify the inoculation success in terms of fungal symbiont establishment in roots of inoculated plants because specific fungal strains could not be detected within colonized roots. Using mitochondrial large subunit ribosomal DNA, we show that Rhizophagus irregularis (formerly known as Glomus intraradices) isolate BEG140 consists of two different haplotypes. We developed nested PCR assays to specifically trace each of the two haplotypes in the roots of Phalaris arundinacea from a field experiment in a spoil bank of a former coal mine, where BEG140 was used as inoculant. We revealed that despite the relatively high diversity of native R. irregularis strains, R. irregularis BEG140 survived and proliferated successfully in the field experiment and was found significantly more often in the inoculated than control plots. This work is the first one to show tracing of an inoculated AMF isolate in the roots of target plants and to verify its survival and propagation in the field. These results will have implications for basic research on the ecology of AMF at the intraspecific level as well as for commercial users of mycorrhizal inoculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antunes PM, Koch AM, Dunfield KE, Hart MM, Downing A, Rillig MC, Klironomos JN (2009) Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant Soil 317:257–266

    Article  CAS  Google Scholar 

  • Blaszkowski J, Czerniawska B, Wubet T, Schäfer T, Buscot F, Renker C (2008) Glomus irregulare, a new arbuscular mycorrhizal fungus in the Glomeromycota. Mycotaxon 106:247–267

    Google Scholar 

  • Börstler B, Raab PA, Thiéry O, Morton JB, Redecker D (2008) Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol 180:452–465. doi:10.1111/j.1469-8137.2008.02574.x

    Article  PubMed  Google Scholar 

  • Börstler B, Thiéry O, Sýkorová Z, Berner A, Redecker D (2010) Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands. Mol Ecol 19:1497–1511. doi:10.1111/j.1365-294X.2010.04590.x

    Article  PubMed  Google Scholar 

  • Croll D, Corradi N, Gamper HA, Sanders IR (2008a) Multilocus genotyping of arbuscular mycorrhizal fungi and marker suitability for population genetics. New Phytol 180:564–568

    Article  PubMed  CAS  Google Scholar 

  • Croll D, Wille L, Gamper HA, Mathimaran N, Lammers PJ, Corradi N, Sanders IR (2008b) Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 178:672–687. doi:10.1111/j.1469-8137.2008.02381.x

    Article  PubMed  CAS  Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937. doi:10.1111/j.1469-8137.2008.02726.x

    Article  PubMed  CAS  Google Scholar 

  • Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609. doi:10.1016/j.apsoil.2006.09.012

    Article  Google Scholar 

  • Fehrer J, Krak K, Chrtek J (2009) Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol Biol 9:239. doi:10.1186/1471-2148-9-239

    Article  PubMed  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet-sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Gryndler M, Sudová R, Püschel D, Rydlová J, Janoušková M, Vosátka M (2008) Cultivation of high-biomass crops on coal mine spoil banks: can microbial inoculation compensate for high doses of organic matter? Bioresour Technol 99:6391–6399. doi:10.1016/j.biortech.2007.11.059

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) Bioedit: user-friendly biological sequence alignment and analysis program 686 for Windows 95/98/NT. North Carolina State University, Raleigh

    Google Scholar 

  • Helgason T, Fitter AH, Young JPW (1999) Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Mol Ecol 8:659–666

    Article  CAS  Google Scholar 

  • Janoušková M, Seddas P, Mrnka L, van Tuinen D, Dvořáčková A, Tollot M, Gianinazzi-Pearson V, Vosátka M, Gollotte A (2009) Development and activity of Glomus intraradices as affected by co-existence with Glomus claroideum in one root system. Mycorrhiza 19:393–402. doi:10.1007/s00572-009-0243-4

    Article  PubMed  Google Scholar 

  • Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet I, Sanders IR (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci USA 101:2369–2374

    Article  PubMed  CAS  Google Scholar 

  • Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110

    Article  PubMed  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA-mycorrhizas. Mycol Res 92:486–505

    Article  Google Scholar 

  • Krüger M, Stockinger H, Kruger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223. doi:10.1111/j.1469-8137.2009.02835.x

    Article  PubMed  Google Scholar 

  • Lee J, Young JPW (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol 183:200–211. doi:10.1111/j.1469-8137.2009.02834.x

    Article  PubMed  CAS  Google Scholar 

  • Mathimaran N, Falquet L, Ineichen K, Picard C, Redecker D, Boller T, Wiemken A (2008) Microsatellites for disentangling underground networks: strain-specific identification of Glomus intraradices, an arbuscular mycorrhizal fungus. Fungal Genet Biol 45:812–817

    Article  PubMed  CAS  Google Scholar 

  • Mummey DL, Antunes PM, Rillig MC (2009) Arbuscular mycorrhizal fungi pre-inoculant identity determines community composition in roots. Soil Biol Biochem 41:1173–1179. doi:10.1016/j.soilbio.2009.02.027

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Püschel D, Rydlová J, Sudová R, Gryndler M (2008) Cultivation of flax in spoil-bank clay: mycorrhizal inoculation vs. high organic amendments. J Plant Nutr Soil Sci 171:872–877. doi:10.1002/jpln.200800160

    Article  Google Scholar 

  • Raab PA, Brennwald A, Redecker D (2005) Mitochondrial large ribosomal subunit sequences are homogeneous within isolates of Glomus (arbuscular mycorrhizal fungi, Glomeromycota). Mycol Res 109:1315–1322

    Article  PubMed  CAS  Google Scholar 

  • Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80

    Article  CAS  Google Scholar 

  • Redecker D, Thierfelder H, Walker C, Werner D (1997) Restriction analysis of PCR-amplified internal transcribed spacers of ribosomal DNA as a tool for species identification in different genera of the order Glomales. Appl Environ Microb 63:1756–1761

    CAS  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266

    Article  PubMed  Google Scholar 

  • Rosendahl S, Mcgee P, Morton JB (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18:4316–4329

    Article  PubMed  Google Scholar 

  • Rydlová J, Enkhtuya B, Vosátka M (2004) Sporulation of four arbuscular mycorrhizal fungi isolates inside dead seed cavities and glass capillaries. Symbiosis 36:269–284

    Google Scholar 

  • Rydlová J, Püschel D, Vosátka M, Charvátová K (2008) Different effect of mycorrhizal inoculation in direct and indirect reclamation of spoil banks. J Appl Bot Food Qual 82:15–20

    Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Schüßler A, Walker C, Gloucester, published in libraries at Royal Botanic Garden Edinburgh, Kew, Botanische Staatssammlung Munich, and Oregon State University; freely available online at www.amf-phylogeny.com. Accessed 1 Mar 2010

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol 21:190–197

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Sokolski S, Dalpe Y, Seguin S, Khasa D, Levesque CA, Piche Y (2010) Conspecificity of DAOM 197198, the model arbuscular mycorrhizal fungus, with Glomus irregulare: molecular evidence with three protein-encoding genes. Botany-Botanique 88:829–838. doi:10.1139/B10-050

    Article  CAS  Google Scholar 

  • Stockinger H, Walker C, Schüßler A (2009) ‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187. doi:10.1111/j.1469-8137.2009.02874.x

    Article  PubMed  Google Scholar 

  • Stukenbrock EH, Rosendahl S (2005) Development and amplification of multiple co-dominant genetic markers from single spores of arbuscular mycorrhizal fungi by nested multiplex PCR. Fungal Genet Biol 42:73–80

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14. doi:10.1007/s00572-007-0147-0

    Article  PubMed  Google Scholar 

  • Thiéry O, Börstler B, Ineichen K, Redecker D (2010) Evolutionary dynamics of introns and homing endonuclease ORFs in a region of the large subunit of the mitochondrial rRNA in Glomus species (arbuscular mycorrhizal fungi, Glomeromycota). Mol Phylogenet Evol 55:599–610. doi:10.1016/j.ympev.2010.02.013

    Article  PubMed  Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • Waaland ME, Allen EB (1987) Relationships between VA mycorrhizal fungi and plant cover following surface mining in Wyoming. J Range Manage 40:271–276

    Article  Google Scholar 

  • Wrobel C, Coulman BE, Smith DL (2009) The potential use of reed canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agr Scand B-S P 59:1–18. doi:10.1080/09064710801920230

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Marie Havránková and Petra Bukovská for conducting some DNA extractions, Blanka Vlasáková for excellent help with the statistical analyses, Jana Rydlová and Radka Sudová for valuable comments on the manuscript, Florian Walder for helpful suggestions, the team of the Department of Mycorrhizal Symbioses of the IB/ASCR for root staining and evaluation of mycorrhizal colonization and MIP, and the team of the DNA laboratory of the IB/ACSR for the optimization of the nrLSU approach and their continuous support. The research was supported by the Ministry of Education, Youth and Sports of the Czech Republic (grant number 1M0571), the Academy of Sciences of the Czech Republic (grant numbers AV0Z60050516 and AV0Z50200510), by the Grant Agency of the Academy of Sciences of the Czech Republic (grant number P504/10/P021), and by the Swiss National Science Foundation (grant numbers 3100A0-109466 and 31003A-124966). We acknowledge Thomas Boller and Andres Wiemken from the Botanical Institute, University of Basel for support, the members of the Indo Swiss Collaboration in Biotechnology project for interesting exchanges, and the technical staff at Hebelstrasse for making things work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Sýkorová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 889 kb)

ESM 2

(DOC 381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sýkorová, Z., Börstler, B., Zvolenská, S. et al. Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22, 69–80 (2012). https://doi.org/10.1007/s00572-011-0375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0375-1

Keywords

Navigation