Skip to main content
Log in

Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

To identify the importance of arbuscular mycorrhizal fungi (AMF) colonizing wetland seedlings following flooding, we assessed the effects of AMF on seedling establishment of two pioneer species, Bidens frondosa and Eclipta prostrata grown under three levels of water availability and ask: (1) Do inoculated seedlings differ in growth and development from non-inoculated plants? (2) Are the effects of inoculation and degree of colonization dependent on water availability? (3) Do plant responses to inoculation differ between two closely related species? Inoculation had no detectable effects on shoot height, or plant biomass but did affect biomass partitioning and root morphology in a species-specific manner. Shoot/root ratios were significantly lower in non-inoculated E. prostrata plants compared with inoculated plants (0.381 ± 0.066 vs. 0.683 ± 0.132). Root length and surface area were greater in non-inoculated E. prostrata (259.55 ± 33.78 cm vs. 194.64 ± 27.45 cm and 54.91 ± 7.628 cm2 vs. 46.26 ± 6.8 cm2, respectively). Inoculation had no detectable effect on B. frondosa root length, volume, or surface area. AMF associations formed at all levels of water availability. Hyphal, arbuscular, and vesicular colonization levels were greater in dry compared with intermediate and flooded treatments. Measures of mycorrhizal responsiveness were significantly depressed in E. prostrata compared with B. frondosa for total fresh weight (−0.3 ± 0.18 g vs. 0.06 ± 0.06 g), root length (−0.78 ± 0.28 cm vs.−0.11 ± 0.07 cm), root volume (−0.49 ± 0.22 cm3 vs. 0.06 ± 0.07 cm3), and surface area (−0.59 ± 0.23 cm2 vs.−0.03 ± 0.08 cm2). Given the disparity in species response to AMF inoculation, events that alter AMF prevalence in wetlands could significantly alter plant community structure by directly affecting seedling growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bagyaraj DJ, Manjynath A, Patil RB (1979) Occurrence of vesicular-arbuscular mycorrhizas in some tropical aquatic plants. Trans Br Mycol Soc 72:165–166

    Article  Google Scholar 

  • Bedinger MS (1978) Relation between forest species and flooding. In: Greeson PE, Clark JR, Clark JE (eds) Wetland functions and values: the state of our understanding; proceedings of the national symposium on wetlands. American Water Resources Association, Minnesota, pp 427–435

    Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture-ASA Publication No. 54. American Society Agronomy, Madison

    Google Scholar 

  • Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 117–131

    Google Scholar 

  • Bohrer KE, Friese CF, Amon JP (2004) Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337

    Article  PubMed  Google Scholar 

  • Brown AM, Bledsoe C (1996) Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84:703–715

    Article  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR monograph 32. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Carvalho LM, Cacador I, Martins-Loucao MA (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus Estuary (Portugal). Mycorrhiza 11:303–309

    Article  Google Scholar 

  • Carvalho LM, Correia PM, Cacador I, Martins-Loucao MA (2003) Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 38:137–143

    Article  Google Scholar 

  • Cerligione LJ, Liberta AE, Anderson RC (1988) Effects of soil moisture and soil sterilization on vesicular-arbuscular mycorrhizal colonization and growth of little bluestem (Schizachyrium scoparium). Can J Bot 66:757–761

    Article  CAS  Google Scholar 

  • Cooke JC, Lefor MW (1998) The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restor Ecol 6:214–222

    Article  Google Scholar 

  • Cooke JC, Butler RH, Madole G (1993) Some observations of the vertical distribution of vesicular arbuscular mycorrhizae in roots of salt marsh grasses growing in saturated soils. Mycologia 85:547–550

    Article  Google Scholar 

  • Cornwell WK, Bedford BL, Chapin CT (2001) Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. Am J Bot 88:1824–1829

    Article  Google Scholar 

  • Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. USDI Fish Wildl Serv FWS/OBS 79(31):103

    Google Scholar 

  • Crawford RMM (1992) Oxygen availability as an ecological limit to plant distribution. Adv Ecol Res 23:93–185

    Article  CAS  Google Scholar 

  • Daleo P et al (2008) Mycorrhizal fungi determine salt-marsh plant zonation depending on nutrient supply. J Ecol 96:431–437

    Article  Google Scholar 

  • Dunham RM, Ray AM, Inouye RS (2003) Growth, physiology, and chemistry of mycorrhizal and nonmycorrhizal Typha latifolia seedlings. Wetlands 23:890–896

    Article  Google Scholar 

  • Escudero V, Mendoza R (2005) Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza 15:291–299

    Article  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot-London 104:1263–1280

    Article  CAS  Google Scholar 

  • Fraser LH, Feinstein LM (2005) Effects of mycorrhizal inoculant, N:P supply ration, and water level on the growth and biomass allocation of three wetland plant species. Can J Bot 83:1117–1125

    Article  Google Scholar 

  • Garcia I, Mendoza R, Pomar MC (2008) Deficit and excess of soil water impact on plant growth of Lotus tenuis by affecting nutrient uptake and arbuscular mycorrhizal symbiosis. Plant Soil 304:117–131

    Article  CAS  Google Scholar 

  • Grime JP, Hiller SH (1992) The contribution of seedling regeneration to the structure and dynamics of plant communities and larger units of landscape. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CABI, Oxon, pp 349–364

    Google Scholar 

  • Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145

    Article  Google Scholar 

  • Hewitt E (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux, Farnham Royal

    Google Scholar 

  • Ipsilantis I, Sylvia DM (2007) Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Appl Soil Ecol 35:261–271

    Article  Google Scholar 

  • Jackson RM, Mason PA (1984) Mycorrhiza. Edward Arnold Ltd, London

    Google Scholar 

  • Janos DP (1980) Vesicular-arbuscular mycorrhizae affect lowland tropical rainforest plant growth. Ecology 61:51–162

    Article  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Jastrow JD, Miller RM (1991) Methods for assessing the effects of biota on soil structure. Agr Ecosyst Environ 34:279–303

    Article  Google Scholar 

  • Kandalepas D, Stevens KJ, Shaffer GP, Platt WJ (2010) How abundant are root-colonizing fungi in Southeastern Louisiana’s degraded marshes? Wetlands 30:189–199

    Article  Google Scholar 

  • Keddy PA (2002) Wetland ecology: principles and conservation, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Khan AG (2004) Mycotrophy and its significance in wetland ecology and wetland management. In: Wong MH (ed) Wetlands ecosystems in asia: function and management. Elsevier B.V, Amsterdam, pp 95–114

    Chapter  Google Scholar 

  • Khan AG, Belik M (1995) Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer-Verlag, Berlin, pp 627–666

    Google Scholar 

  • McGonigle TP, Evans DG, Miller MH (1990) Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in growth chamber and field experiments. New Phytol 116:629–636

    Article  CAS  Google Scholar 

  • Middleton BA (1999) Wetland restoration, flood pulsing and disturbance dynamics. Wiley, New York

    Google Scholar 

  • Miller SP (2000) Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155

    Article  Google Scholar 

  • Miller SP, Sharitz RR (2000) Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Funct Ecol 14:738–748

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges-an overview. Mycorrhiza 14:65–77

    Article  PubMed  CAS  Google Scholar 

  • Neto D, Carvalho LM, Cruz C, Martin-Louçao MA (2006) How do mycorrhizas affect C and N relationships in flooded Aster tripolium plants? Plant Soil 279:51–63

    Article  CAS  Google Scholar 

  • Osundina MA (1998) Nodulation and growth of mycorrhizal Casuarina Equisetifolia JR. and G. First in response to flooding. Biol Fertil Soils 26:95–99

    Article  Google Scholar 

  • Peat HJ, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British flora. New Phytol 125:845–854

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Radhika KP, Rodrigues BF (2007) Arbuscular mycorrhizae in association with aquatic and marshy plant species in Goa, India. Aquat Bot 86:291–294

    Article  Google Scholar 

  • Ray AM, Inouye RS (2006) Effects of water-level fluctuations on the arbuscular mycorrhizal colonization of Typha latifolia L. Aquat Bot 84:210–216

    Article  Google Scholar 

  • Reeves BF, Wagner D, Moorman T, Kiel J (1979) The role of endomycorrhizae in revegetation practices in the semi-arid west. I. A comparison of incidence of mycorrhizae in severely disturbed vs. natural environments. Am J Bot 66:6–13

    Article  Google Scholar 

  • Rickerl DH, Sancho FO, Ananth S (1994) Vesicular-arbuscular endomycorrhizal colonization of wetland plants. J Environ Qual 23:913–916

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Saif SR (1987) Growth responses of tropical forage plant species to vesicular-arbuscular mycorrhizae. Plant Soil 97:25–35

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2002) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Šraj-Kržič N, Pongrac P, Klemenc M, Kladnik A, Regvar M, Gaberscik A (2006) Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:333–338

    Google Scholar 

  • Stevens KJ, Peterson RL (1996) The effect of a water gradient on the vesicular-arbuscular mycorrhizal status of Lythrum Salicaria L. (Purple Loosestrife). Mycorrhiza 6:99–104

    Article  Google Scholar 

  • Stevens KJ, Peterson RL (2007) Relationships among three pathways for resource acquisition and their contribution to plant performance in the emergent aquatic plant Lythrum salicaria (L.). Plant Biol 9:758–765

    Article  PubMed  CAS  Google Scholar 

  • Stevens KJ, Spender SW, Peterson RL (2002) Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L., under inundated conditions. Mycorrhiza 12:277–283

    Article  PubMed  CAS  Google Scholar 

  • Stevens KJ, Wellner MR, Acevedo MF (2010) Dark septate endophyte and arbuscular mycorrhizal status of vegetation colonizing a bottomland hardwood forest after a 100 year flood. Aquat Bot 92:105–111

    Article  Google Scholar 

  • Turner SD, Amon JP, Schneble RM, Friese CF (2000) Mycorrhizal fungi associated with plants in ground-water fed wetlands. Wetlands 20:200–204

    Article  Google Scholar 

  • Turner SD, Friese CF (1998) Plant-mycorrhizal community dynamics associated with a moisture gradient within a rehabilitated prairie fen. Restor Ecol 6:44–51

    Article  Google Scholar 

  • van der Heijden MGA (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van der Valk AG (1981) Succession in wetlands: a Gleasonian approach. Ecology 62:688–696

    Article  Google Scholar 

  • Weishampel PA (2005) Distribution and function of arbuscular mycorrhizal fungi in calcareous fen plant communities. Dissertation. Cornell University

  • White J, Charvat I (1999) The mycorrhizal status of an emergent aquatic. Lythrum salicaria L. at different levels of phosphorus availability. Mycorrhiza 9:191–197

    Article  CAS  Google Scholar 

  • Wolfe BE, Weishampel PA, Klironomos JN (2006) Arbuscular mycorrhizal fungi and water table affect wetland plant community composition. J Ecol 94:905–914

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sajag Adhikari, Johanna Blaszczak, Cheryl Harrell, Seon-Young Kim, Tiffany Limmanjing, Amanda Turley, and Misty Wellner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Stevens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, K.J., Wall, C.B. & Janssen, J.A. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. Mycorrhiza 21, 279–288 (2011). https://doi.org/10.1007/s00572-010-0334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0334-2

Keywords

Navigation