Skip to main content
Log in

Arbuscular mycorrhiza partially protect chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The present work examined the oxidative stress induced by different concentrations (0.02 and 0.2 mg l-1) of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) in non-target chicory root colonised or not by Glomus intraradices in a monoxenic system. The fungicides were found to cause oxidative damage by increasing lipid peroxidation measured by malondialdehyde production in non-colonised roots. Detoxification of the H2O2 product was measured at 0.2 mg l-1 of fenpropimorph by an increase in peroxidase activities suggesting an antioxidant capacity in these roots. Moreover, this study pointed out the ability of arbuscular mycorrhiza to alleviate partially the oxidative stress in chicory roots, probably by lowering reactive oxygen species concentrations, resulting from increases in antioxidant defences. Our results suggest that the enhanced fungicide tolerance in the AM symbiosis could be related to less cell membrane damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Côme D (1996) Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol Plant 97:104–110

    Article  CAS  Google Scholar 

  • Beilby JP (1980) Fatty acid and sterol composition of ungerminated spores of the vesicular–arbuscular mycorrhizal fungus, Acaulospora laevis. Lipids 15:949–952

    Article  CAS  Google Scholar 

  • Ben Youssef N, Zarrouk M, Ben Miled DD, Cherif A, Ghorbal MH (2003) Effets du cadmium sur la composition en lipides foliaires de plantules de colza (Brassica napus L.). Riv Ital Sostanze Grasse 80:165–170

    Google Scholar 

  • Bidar G, Garçon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut 147:546–553

    Article  CAS  PubMed  Google Scholar 

  • Bidar G, Verdin A, Garçon G, Pruvot C, Laruelle F, Grandmougin-Ferjani A, Douay F, Shirali P (2008) Changes in fatty acid composition and content of two plants (Lolium perenne and Trifolium repens) grown during 6 and 18 months in a metal (Pb, Cd, Zn) contaminated field. Water Air Soil Pollut 192:281–291

    Article  CAS  Google Scholar 

  • Bjørnlund L, Ekelund F, Christensen S, Jacobsen CS, Krogh PH, Johnsen K (2000) Interactions between saprotrophic fungi, bacteria and protozoa on decomposing wheat roots in soil influenced by the fungicide fenpropimorph (Corbel®): a field study. Soil Biol Biochem 7:967–975

    Article  Google Scholar 

  • Blanckaert A, Belingheri L, Vasseur J, Hilbert JL (2000) Changes in lipid composition during somatic embryogenesis in leaves of Cichorium. Plant Sci 157:165–172

    Article  CAS  PubMed  Google Scholar 

  • Brundrett M, Melville L, Peterson L (1994) Clearing and staining mycorrhizal roots. In: Brundrett M, Melville L, Peterson L (eds) Practical methods in mycorrhiza research. Mycologue Publications, Waterloo, British Columbia, pp 42–46

    Google Scholar 

  • Campagnac E, Fontaine J, Lounès-Hadj Sahraoui A, Laruelle F, Durand R, Grandmougin-Ferjani A (2008) Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots. Phytochemistry 69:2912–2919

    Article  CAS  PubMed  Google Scholar 

  • Clijsters H, Van Assche F, Gora L (1991) In: Rozema J, Verkleij JAC (eds) Ecological responses to environmental stresses. Kluwer, The Netherlands, p 22

    Google Scholar 

  • Costet-Corio M-F, Benveniste P (1988) Sterol metabolism in wheat treated by N-subsituted morpholines. Pestic Sci 22:343–357

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranovà E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Debiane D, Garçon G, Verdin A, Fontaine J, Durand R, Grandmougin-Ferjani A, Shirali P, Lounès-Hadj Sahraoui A (2008) In vitro evaluation of the oxidative stress and genotoxic potentials of anthracene on mycorrhizal chicory roots. Environ Exp Bot 64:120–127

    Article  CAS  Google Scholar 

  • Debieu D, Gall C, Gredt M, Bach J, Malosse C, Leroux P (1992) Ergosterol biosynthesis and its inhibition by fenpropimorph in Fusarium species. Phytochemistry 31:1223–1233

    Article  CAS  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 9:579–585

    Article  Google Scholar 

  • Declerck S, D’Or D, Cranenbrouck S, Le Boulengé E (2001) Modelling the sporulation dynamics of arbuscular mycorrhizal fungi in monoxenic culture. Mycorrhiza 11:225–230

    Article  Google Scholar 

  • Declerck S, Strullu DG, Fortin JA (2005) In vitro cultures of mycorrhizas. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  • Dotan Y, Lichtenberg D, Pinchuk I (2004) Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res 43:200–227

    Article  CAS  PubMed  Google Scholar 

  • Ekelund F (1999) The impact of the fungicide fenpropimorph (Corbel®) on bacterious and fungivorous protozoa in soil. J Appl Ecol 36:233–243

    Article  CAS  Google Scholar 

  • Escobar JA, Rubio MA, Lissi EA (1996) SOD and catalase inactivation by singlet oxygen and peroxyl radicals. Free Radic Biol Med 20:285–290

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  • Fortin J, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Georgin P, Gouet M (2005) Statistiques avec excel. Presses Universitaires de Rennes, Paris

    Google Scholar 

  • Gopi R, Jaleel CA, Sairam R, Lakshamanan GMA, Gomathinayagam M, Panneerselvam R (2007) Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids Surf B Biointerfaces 60:180–186

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Hodge NC, Morton JB (1995) Fatty acid methyl ester profiles for characterization of glomalean fungi and their endomycorrhizae. Appl Environ Microbiol 61:58–64

    CAS  PubMed  Google Scholar 

  • Grandmougin A, Bouvier-Navé P, Ullmann P, Benveniste P, Hartmann MA (1989) Cyclopropyl sterol and phospholipid composition of membrane fractions from maize roots treated with fenpropimorph. Plant Physiol 90:591–597

    Article  CAS  PubMed  Google Scholar 

  • Grandmougin-Ferjani A, Fontaine J, Durand R (2005) Carbon metabolism, lipid composition and metabolism in arbuscular mycorrhizal fungi. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 159–180

    Chapter  Google Scholar 

  • Halliwel B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Claredon Press, Oxford

    Google Scholar 

  • He JX, Fujioka S, Li TC, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang JC (2003) Sterols regulate development and gene expression in Arabidopsis. Plant Physiol 131:1258–1269

    Article  CAS  PubMed  Google Scholar 

  • He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 59:128–133

    Article  CAS  PubMed  Google Scholar 

  • Hewitt HG (1998) Fungicides in crop protection. CAB, Wallingford

    Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hillis DG, Antunes P, Sibley PK, Kliromonos JN, Solomon KR (2008) Structural responses of Daucus carota root-organ cultures and the arbuscular mycorrhizal fungus, Glomus intraradices, to 12 pharmaceuticals. Chemosphere 73:344–352

    Article  CAS  PubMed  Google Scholar 

  • Hodge A (2000) Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiol Ecol 32:91–96

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Lakshmanan GMA, Panneerselvam R (2006) Triadimephon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Sci 171:271–276

    Article  CAS  Google Scholar 

  • Khalil IA, Mercer EI (1991) Accumulation of 9β, 19-cyclopropysterols in cereals treated with fenpropimorph. J Agric Food Chem 39:404–407

    Article  CAS  Google Scholar 

  • Kishorekumar A, Jaleel CA, Manivannan P, Sankar B, Sridharan R, Murali PV, Panneerselvam R (2008) Comparative effects of different triazole compounds on antioxidant metabolism of Solenostemon rotundifolius. Colloids Surf B Biointerfaces 62:307–311

    Article  CAS  PubMed  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids Surf B Biointerfaces 57:69–74

    Article  CAS  PubMed  Google Scholar 

  • Marin M, Ybarra M, Fé A, Garcia-Férriz L (2002) Effect of arbuscular mycorrhizal fungi and pesticides on Cyanara cardunculus growth. Agric Food Sci Finl 11:245–251

    CAS  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Faichild GL, Swan JA (1990) A method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mitchell HJ, Hall JL, Barber MS (1994) Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves. Plant Physiol 104:551–556

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    CAS  PubMed  Google Scholar 

  • Mosleh YY, Paris-Palcios S, Couderchet M, Biagianti-Risbourg S, Vernet G (2005) Metallothionein induction, antioxidative responses, glycogen and growth changes in Tubifex Tubifex (oligocaete) exposed to the fungicide, fenhexamid. Environ Pollut 135:73–82

    Article  CAS  PubMed  Google Scholar 

  • Nordby HE, Nemec S, Nagy S (1981) Fatty acids and sterols associated with citrus root mycorrhizae. J Agric Food Chem 29:396–401

    Article  CAS  Google Scholar 

  • Nourissat P, Travert M, Chevanne M, Tekpli X, Rebillard A, Le Moigne-Muller G, Rissel M, Cillard J, Dimanche-Boitrel M-T, Lagadic-Gossmann D, Sergent O (2008) Ethanol induces oxidative stress in primary rat hepatocytes through the early involvement of lipid raft clustering. Hepatology 47:59–70

    Article  CAS  PubMed  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45:1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Pacovsky RS, Fuller G (1988) Mineral and lipid composition of Glycine–Glomus–Bradyrhizobium symbioses. Physiol Plant 72:733–746

    Article  CAS  Google Scholar 

  • Parent C, Capelli N, Dat J (2008) Formes réactives de l’oxygène, stress et mort cellulaire chez les plantes. C R Biol 331:255–261

    Article  CAS  PubMed  Google Scholar 

  • Rosslenbroich H-J (1999) Efficacy of fenhexamid (KBR 2738) against Botrytis cinerea and related fungal pathogens. Pflanzenschutz-Nachr 52:127–144

    Google Scholar 

  • Sancholle M, Dalpé Y, Grandmougin-Ferjani A (2001) Lipids of mycorrhizae. In: Hock B (ed) Fungal associations. Springer, Berlin, Heidelberg, pp 63–93

    Google Scholar 

  • Sanità Di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Schaller H, Maillot-Vernier P, Benveniste P, Belliard G (1991) Sterol composition of tobacco calli selected for resistance to fenpropimorph. Phytochemistry 30:2457–2554

    Article  Google Scholar 

  • Schrick K, Fujioka S, Takatsuto S, Stierhof Y-D, Stransky H, Yoshida S, Jürgens G (2004) A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J 38:227–243

    Article  CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Shirali P, Teissier E, Marez T, Hildebrand HF, Haguenoer JM (1994) Effect of alpha Ni3S2 on archidonic acid metabolites in cultured human lung cells (L132 cell line). Carcinogenesis 15:759–762

    Article  CAS  PubMed  Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase: structure and function. Annu Rev Plant Physiol Plant Mol Biol 42:145–188

    Article  CAS  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New-York

    Google Scholar 

  • Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58:595–604

    Article  CAS  PubMed  Google Scholar 

  • Skórzyńska-Polit E, Krupa Z (2006) Lipid peroxidation in cadmium-treated Phaseolus coccineus plants. Arch Environ Contam Toxicol 50:482–487

    Article  PubMed  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Effect of lead on lipid peroxidation of the hepatic subcellular organelles of developing chick embryos. Biochem Int 27:803–809

    CAS  PubMed  Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34

    Article  CAS  PubMed  Google Scholar 

  • Strullu DG, Romand C (1986) Méthode d’obtention d’endomycorhizes à vésicules et arbuscules en conditions axéniques. C R Acad Sci III 303:245–250

    Google Scholar 

  • Taylor GJ (1988) The physiology of aluminum phytotoxicity. In: Sigel H (ed) Metal ions in biological systems: aluminum and its role in biology, vol 24. Marcel Dekker, New York, pp 123–163

    Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63:995–1001

    Article  Google Scholar 

  • Thirup L, Johnsen K, Torsvik V, Spliid NH, Jacobsen CS (2001) Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots. Soil Biol Biochem 33:1517–1524

    Article  CAS  Google Scholar 

  • Thompson GAJR (1992) The regulation of membrane lipids. CRC, Boca Raton, FL

    Google Scholar 

  • Thompson JE, Froese CD, Madey E, Smith MD, Hong Y (1998) Lipid metabolism during plant senescence. Prog Lipid Res 37:119–141

    Article  CAS  PubMed  Google Scholar 

  • Van Breusegem F, Vranovà E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Verdin A, Lounès-Hadj Sahraoui A, Fontaine J, Grandmougin-Ferjani A, Durand R (2006) Effects of anthracene on development of an arbuscular mycorrhizal fungus and contribution of the symbiotic association to pollutant dissipation. Mycorrhiza 16:397–405

    Article  CAS  PubMed  Google Scholar 

  • Wan MT, Rahe JE, Watts RG (1998) A new technique for determining the sublethal toxicity of pesticides to the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Environ Toxicol Chem 17:1421–1428

    Article  CAS  Google Scholar 

  • Wu YX, von Tiedemann A (2001) Physiological effects of azoxystrobin and epiconazole on senescence and the oxidative status of wheat. Pestic Biochem Physiol 71:1–10

    Article  CAS  Google Scholar 

  • Wu YX, Zou YN, Xia RX (2006a) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42:166–172

    Article  CAS  Google Scholar 

  • Wu YX, Xia RX, Zou YN (2006b) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 163:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Furutera A, Seki K, Toyoda S (2008) Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol Biochem 46:786–793

    Article  CAS  PubMed  Google Scholar 

  • Zhang LZ, Zhu YG, Lin AJ, Chen BD, Smith SE, Smith FA (2006) Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. Chemosphere 64:1627–1632

    Article  CAS  PubMed  Google Scholar 

  • Zhang LZ, Wei N, Wu QX, Ping ML (2007) Anti-oxidant response of Cucumis sativus L. to fungicide carbendazim. Pestic Biochem Physiol 89:54–59

    Article  CAS  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    Article  CAS  PubMed  Google Scholar 

  • Zocco D, Fontaine J, Lozanova E, Renard L, Bivort C, Durand R, Grandmougin-Ferjani A, Declerck S (2008) Influence of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) on the development of an arbuscular mycorrhizal fungus. Mycol Res 112:592–601

    Article  CAS  PubMed  Google Scholar 

  • Zohrehvand S (2005) On activated seed swelling technique. Polym Int 54:1191–1195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In this paper, the first position is shared by the two co-authors: A. Lounès-Hadj Sahraoui and E. Campagnac. This work was supported by a Marie-Curie Early stage Research Training Fellowship of the European Community’s Sixth framework Programme under contract number MEST-CT-2004-514213. The laboratory participates in the Institut de Recherches en Environnement Industriel (IRENI), which is financed by the Communauté Urbaine de Dunkerque, the Région Nord-Pas de Calais, the Ministère de l’enseignement supérieur et de la recherche, and European funds (FEDER). We thank Bayer and BASF, which kindly provided the SBI fungicides, and we are grateful to Natacha Bourdon for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anissa Lounès-Hadj Sahraoui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campagnac, E., Lounès-Hadj Sahraoui, A., Debiane, D. et al. Arbuscular mycorrhiza partially protect chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid. Mycorrhiza 20, 167–178 (2010). https://doi.org/10.1007/s00572-009-0267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0267-9

Keywords

Navigation