Skip to main content
Log in

Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions

  • Technical Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Actively growing extraradical hyphae extending from mycorrhizal plants are an important source of inoculum in soils which has seldom been considered in vitro to inoculate young plantlets. Seedlings of Medicago truncatula were grown in vitro in the extraradical mycelium network extending from mycorrhizal plants. After 3, 6, 9, 12, and 15 days of contact with the mycelium, half of the seedlings were harvested and analyzed for root colonization. The other half was carefully transplanted in vitro on a suitable growth medium and mycelium growth and spore production were evaluated for 4 weeks. Seedlings were readily colonized after 3 days of contact with the mycelium. Starting from 6 days of contact, the newly colonized seedlings were able to reproduce the fungal life cycle, with the production of thousands of spores within 4 weeks. The fast mycorrhization process developed here opens the door to a broad range of in vitro studies for which either homogenous highly colonized seedlings or mass-produced in vitro inoculum is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bago B, Cano C (2005) Breaking myths on arbuscular mycorrhizas in vitro biology. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 111–138

    Chapter  Google Scholar 

  • Bago B, Azcon-Aguilar C, Piché Y (1998) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62. doi:10.2307/3761011

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002) Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Plant Soil 244:189–197. doi:10.1023/A:1020212328955

    Article  CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular arbuscular mycorrhiza formation on Ri-T-DNA transformed roots. New Phytol 108:211–218. doi:10.1111/j.1469-8137.1988.tb03698.x

    Article  Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular–arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  PubMed Central  Google Scholar 

  • Biermann B, Linderman RG (1983) Use of vesicular arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105. doi:10.1111/j.1469-8137.1983.tb03472.x

    Article  Google Scholar 

  • Cano C, Dickson S, González-Guerrero M, Bago A (2008) In vitro cultures open new prospects for basic research in arbuscular mycorrhizas. In: Varma A (ed) Mycorrhiza. Springer-Verlag, Berlin, pp 627–654

    Chapter  Google Scholar 

  • Cranenbrouck S, Voets L, Bivort C, Renard L, Stullu DG, Declerck S (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 341–348

    Chapter  Google Scholar 

  • Dalpé Y, Declerck S (2002) Development of Acaulospora rehmii spore and hyphal swellings under root-organ culture. Mycologia 94:850–855. doi:10.2307/3761699

    Article  PubMed  Google Scholar 

  • de la Providencia IE, de Souza FA, Fernandez F, Delmas NS, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261–271. doi:10.1111/j.1469-8137.2004.01236.x

    Article  PubMed  Google Scholar 

  • de la Providencia IE, Fernandez F, Declerck S (2007) Hyphal healing mechanism in the arbuscular mycorrhizal fungi Scutellospora reticulata and Glomus clarum differ in response to severe physical stress. FEMS Microbiol Lett 268:120–125. doi:10.1111/j.1574-6968.2006.00572.x

    Article  PubMed  Google Scholar 

  • de Souza FA, Berbara RLL (1999) Ontogeny of Glomus clarum in Ri T-DNA transformed roots. Mycologia 91:343–350. doi:10.2307/3761379

    Article  Google Scholar 

  • de Souza FA, Declerck S (2003) Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia 95:1004–1012. doi:10.2307/3761908

    Article  PubMed  Google Scholar 

  • de Souza FA, Declerck S, Smit E, Kowalchuk GA (2005) Morphological, ontogenetic and molecular characterization of Scutellospora reticulata (Glomeromycota). Mycol Res 109:697–706. doi:10.1017/S0953756205002546

    Article  PubMed  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1996) In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242

    Article  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585. doi:10.2307/3761216

    Article  Google Scholar 

  • Declerck S, Cranenbrouck S, Dalpé Y, Séguin S, Grandmougin-Ferjani A, Fontaine J, Sancholle M (2000) Glomus proliferum sp nov.: a description based on morphological, biochemical, molecular and monoxenic cultivation data. Mycologia 92:1178–1187. doi:10.2307/3761485

    Article  Google Scholar 

  • Declerck S, D'Or D, Cranenbrouck S, Le Boulenge E (2001) Modelling the sporulation dynamics of arbuscular mycorrhizal fungi in monoxenic culture. Mycorrhiza 11:225–230. doi:10.1007/s005720100124

    Article  Google Scholar 

  • Declerck S, Strullu DG, Fortin JA (eds) (2005) In vitro culture of mycorrhizas. Springer, Berlin

  • Diop TA, Plenchette C, Strullu DG (1994a) Dual axenic culture of sheared-root inocula of vesicular–arbuscular mycorrhizal fungi associated with tomato roots. Mycorrhiza 5:17–22. doi:10.1007/BF00204015

    Article  Google Scholar 

  • Diop TA, Plenchette C, Strullu DG (1994b) In vitro culture of sheared mycorrhizal roots. Symbiosis 17:217–227

    Google Scholar 

  • Doner LW, Bécard G (1991) Solubilisation of gellan gels by chelation of cations. Biotechnol Tech 5:25–28. doi:10.1007/BF00152749

    Article  CAS  Google Scholar 

  • Dupré de Boulois H, Delvaux B, Declerck S (2005) Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium. Environ Pollut 134:515–524. doi:10.1016/j.envpol.2004.08.015

    Article  PubMed  Google Scholar 

  • Dupré de Boulois H, Voets L, Delvaux B, Jakobsen I, Declerck S (2006) Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ Microbiol 8:1926–1934. doi:10.1111/j.1462-2920.2006.01070.x

    Article  Google Scholar 

  • Elmeskaoui A, Damont J-P, Poulin M-J, Piché Y, Desjardins Y (1995) A tripartite culture system for endomycorrhizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 5:313–319. doi:10.1007/BF00207403

    Article  Google Scholar 

  • Elsen A, Declerck S, De Waele D (2003) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311. doi:10.1128/AEM.69.7.4308-4311.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20. doi:10.1139/b01-139

    Article  CAS  Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphea in the soil–inoculum types and external hyphal architecture. Mycologia 83:409–418. doi:10.2307/3760351

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181. doi:10.1111/j.1469-8137.2004.01145.x

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344. doi:10.1046/j.0028-646X.2001.00312.x

    Article  Google Scholar 

  • Hart MM, Reader RJ (2005) The role of the external mycelium in early colonization for three arbuscular mycorhizal fungal species with different colonization strategies. Pedobiologia (Jena) 49:269–279. doi:10.1016/j.pedobi.2004.12.001

    Article  Google Scholar 

  • Hepper C (1981) Techniques for studying the infection of plants by vesicular–arbuscular mycorrhizal fungi under axenic conditions. New Phytol 88:641–647

    Article  Google Scholar 

  • Hernandez-Sebastia C, Piché Y, Desjardins Y (1999) Water relations of whole strawberry plantlets in vitro inoculated with Glomus intraradices in a tripartite culture system. Plant Sci 143:81–91. doi: 10.1016/S0168-9452(99) 00014-X

    Article  CAS  Google Scholar 

  • Hernandez-Sebastia C, Samson G, Bernier PY, Piché Y, Desjardins Y (2000) Glomus intraradices causes differential changes in amino acid and starch concentrations of in vitro strawberry subjected to water stress. New Phytol 148:177–186. doi:10.1046/j.1469-8137.2000.00744.x

    Article  CAS  Google Scholar 

  • Klironomos JM, Hart NN (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184. doi:10.1007/s00572-002-0169-6

    Article  PubMed  Google Scholar 

  • Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders IR (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci U S A 101:2369–2374. doi:10.1073/pnas.0306441101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louche-Tessandier D, Samson G, Hernandez-Sebastia C, Chagvardieff P, Desjardins Y (1999) Importance of light and CO2 on the effects of endomycorrhizal colonization on growth and photosynthesis of potato plantlets (Solanum tuberosum) in an in vitro tripartite system. New Phytol 142:539–550. doi:10.1046/j.1469-8137.1999.00408.x

    Article  Google Scholar 

  • Mosse B, Hepper C (1975) Vesicular arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223. doi: 10.1016/0048-4059(75) 90088-0

    Article  Google Scholar 

  • Nielsen JS, Joner EJ, Declerck S, Olsson S, Jakobsen I (2002) Phospho-imaging as a tool for visualization and noninvasive measurement of P transport dynamics in arbuscular mycorrhizas. New Phytol 154:809–819. doi:10.1046/j.1469-8137.2002.00412.x

    Article  CAS  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737. doi:10.1038/nature02290

    Article  CAS  PubMed  Google Scholar 

  • Pawlowska TE, Douds DD, Charvat I (1999) In vitro propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycol Res 103:1549–1556. doi:10.1017/S0953756299008801

    Article  Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH (ed) Ecological interactions in soil. Blackwell Scientific, Oxford, pp 193–217

    Google Scholar 

  • Rufyikiri G, Thiry Y, Wang L, Delvaux B, Declerck S (2002) Uranium uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices, under root organ culture conditions. New Phytol 156:275–281. doi:10.1046/j.1469-8137.2002.00520.x

    Article  CAS  Google Scholar 

  • Rufyikiri G, Thiry Y, Declerck S (2003) Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions. New Phytol 158:391–399. doi:10.1046/j.1469-8137.2003.00747.x

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (eds) (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • StatSoft Inc (2001) Statistica® release 6. Statsoft Incorporation, Tulsa

    Google Scholar 

  • Strullu DG, Romand C (1986) Méthode d’obtention d’endomycorhizes à vésicules et arbuscules en conditions axéniques. C R Acad Sci 303:245–250

    Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voets L, Dupré de Boulois H, Renard L, Strullu DG, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248:111–118. doi:10.1016/j.femsle.2005.05.025

    Article  CAS  PubMed  Google Scholar 

  • Voets L, de la Providencia IE, Declerck S (2006) Glomeraceae and Gigasporaceae differ in their ability to form mycelium networks. New Phytol 172:185–188. doi:10.1111/j.1469-8137.2006.01873.x

    Article  PubMed  Google Scholar 

  • Voets L, Goubau I, Olsson PA, Merckx R, Declerck S (2008) Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. FEMS Microbiol Ecol 65:350–360. doi:10.1111/j.1574-6941.2008.00503.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from (1) the “Fonds Spéciaux de Recherche” (FSR) of the Université catholique de Louvain, (2) a Marie Curie Early stage Research Training Fellowship of the European Community’s Sixth Framework Programme under contract number MEST CT-2005-021016, (3) the Belgian Science Policy-Program “Science for a Sustainable Development” under contract number SD/BD/05A, (4) the Direction Générale des Relations extérieures of the Région Wallonne for bilateral collaboration between Belgium and Cuba, and (5) the Belgian Federal Office for Scientific, Technical and Cultural affairs (OSTC, contract BCCM C3/10/003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Declerck.

Additional information

Liesbeth Voets and Ivan Enrique de la Providencia contributed equally to this work.

MUCL is part of the Belgian Coordinated Collections of Micro-organisms (BCCM).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voets, L., de la Providencia, I.E., Fernandez, K. et al. Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19, 347–356 (2009). https://doi.org/10.1007/s00572-009-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0233-6

Keywords

Navigation