Skip to main content

Advertisement

Log in

Potentials in synthesizing nanostructured silver particles

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Silver nanoparticle (AgNP) is the apparent metallic nanoparticle formed through the advancement of nanotechnology by the reduction of the silver metal to its nuclear size. The synthesis of AgNP involves few methods such as physical, chemical and biological. The interest on green synthesis of AgNP has focused for it’s eco-friendly and efficient method in contrast with the synthesis of AgNP by chemical and physical methods. Biological method under green synthesis varies with the type of reducing agent used such as microorganisms (bacteria and fungi) and plants and its extractions. Apart from several green syntheses, plant extraction under biological method is deliberated for the synthesis of AgNP. The leaves, stems, and barks of plants are used as reducing agents where its extractions able to synthesize AgNP. Capping agents are used in the synthesis of AgNP besides reducing agents for the stabilization of AgNP synthesized. The size and structure of AgNP synthesized could be characterized by transmission electron microscope, scanning electron microscope, atomic force microscope, fourier transform infrared spectroscopy, energy disperse spectroscopy, and X-ray diffraction. In this review, we discuss the synthesis of AgNP by plants extracts in contrast with the several other synthesis methods and its applications to medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140. doi:10.1016/j.arabjc.2010.04.008

    Article  Google Scholar 

  • Adhya A, Bain J, Ray O, Hazra A, Adhikari S, Dutta G, Ray S, Majumdar BK (2015) Healing of burn wounds by topical treatment: a randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. J Basic Clin Pharm 6:29–34

    Article  Google Scholar 

  • Adzhri R, Md Arshad MK, Gopinath SCB et al (2016) High-performance integrated field-effect transistor-based sensors. Anal Chim Acta 917:1–18. doi:10.1016/j.aca.2016.02.042

    Article  Google Scholar 

  • Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848. doi:10.1016/j.cca.2010.08.016

    Article  Google Scholar 

  • Ahmed S, Ikram S (2015) Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application. Nanomed Nanotechnol 6:4. doi:10.4172/2157-7439.1000309

    Google Scholar 

  • Ahmed S, Ahmad M, Swami BL (2015) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7. doi:10.1016/j.jrras.2015.06.006

    Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016a) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28. doi:10.1016/j.jare.2015.02.007

    Article  Google Scholar 

  • Ahmed S, Mansoon ZA, Ikram S (2016b) One-step method for formation of silver nanoparticle using Withania somnifera extract for antimicrobial activities. J Bionanosci 10:47–53

    Article  Google Scholar 

  • Ahmed S, Mansoon ZA, Ikram S (2016c) Synthesis of silver nanoparticles using leaf extract of Crotolaria retusa as Antimicrobial Green Catalyst. J Bionanosci 10:282–287

    Article  Google Scholar 

  • Ahmed Q, Gupta N et al (2016d) Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract. Artif Cells Nanomed Biotechnol. doi:10.1080/21691401.2016.1215328

    Google Scholar 

  • Ajitha B, Reddy YA, Reddy PS (2014) Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 121:164–172

    Article  Google Scholar 

  • Allafchian AR, Jalali SAH, Hashemi SS, Vahabi MR (2016) Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostructure Chem 6:129–135. doi:10.1007/s40097-016-0187-0

    Article  Google Scholar 

  • Arasu T (2010) Stable silver nanoparticle synthesizing methods and its applications. J Biosci Res 1:259–270

    Google Scholar 

  • Article O (2015) Healing of burn wounds by topical treatment: a randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. J Basic Clin Pharm 6:29–34. doi:10.4103/0976-0105.145776

    Article  Google Scholar 

  • Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1:3

    Article  Google Scholar 

  • Bose D, Chatterjee S (2016) Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl Nanosci 6:895–901. doi:10.1007/s13204-015-0496-5

    Article  Google Scholar 

  • Deb S, Ghosh K, Shetty SD (2015) Nanoimaging in cardiovascular diseases: current state of the art. Indian J Med Res 141(3):285–298

    Article  Google Scholar 

  • Deepti PKKÆ, Rupinder KÆ (2008) Synthesis and characterization of myristic acid capped silver nanoparticles. J Nanopart Res. doi:10.1007/s11051-008-9366-3

    Google Scholar 

  • Devaraj P, Kumari P, Aarti C, Renganathan A (2013) Synthesis and characterization of silver nanoparticles using Cannonball leaves and their cytotoxic activity against MCF-7 cell line. J Nanotechnol. doi:10.1155/2013/598328

    Google Scholar 

  • Dimitrijević R, Cvetković O, Miodragović Z et al (2013) SEM/EDX and XRD characterization of silver nanocrystalline thin film prepared from organometallic solution precursor. J Min Metall Sect B Metall 49:91–95. doi:10.2298/JMMB120111041D

    Article  Google Scholar 

  • Driscoll AJ, Bhat N, Karron RA et al (2012) Disk diffusion bioassays for the detection of antibiotic activity in body fluids: applications for the pneumonia etiology research for child health project. Clin Infect Dis 54:159–164. doi:10.1093/cid/cir1061

    Article  Google Scholar 

  • Filipponi L, Sutherland D (2007) Nanotechnology: a brief introduction. Nanocap. doi:10.1080/13803390802416047

    Google Scholar 

  • Fujimaki M, Nomura K-I, Sato K, Kato T, Gopinath SCB, Wang X, Awazu K, Ohk Y (2010) Detection of colored nanomaterials using evanescent field-based waveguide sensors. Opt Exp 18:15732–15740

    Article  Google Scholar 

  • Gajbhiye S, Sakharwade S (2016) Silver nanoparticles in cosmetics. J Cosmet Dermatol Sci Appl 6:48–53

    Google Scholar 

  • Ge L, Li Q, Wang M et al (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine 9:2399–2407. doi:10.2147/IJN.S55015

    Google Scholar 

  • Ghorbani HR, Safekordi AA, Attar H, Sorkhabadi SMR (2011) Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q 25:317–326

    Google Scholar 

  • Gopinath SCB, Awazu K, Fujimaki M (2012) Waveguide-mode sensors as aptasensors. Sensors 12:2136–2151. doi:10.3390/s120202136

    Google Scholar 

  • Gopinath SCB, Awazu K, Fujimaki M et al (2013) Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors. PLoS ONE 8:1–10. doi:10.1371/journal.pone.0069121

    Article  Google Scholar 

  • Gopinath SCB, Lakshmipriya T, Awazu K (2014) Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens Bioelectron 51:115–123. doi:10.1016/j.bios.2013.07.037

    Article  Google Scholar 

  • Griffith M, Udekwu KI, Gkotzis S et al (2015). In: Alarcon E, Griffith M, Udekwu KI (eds) Silver nanoparticle applications, In the fabrication and design of Medical and Biosensing devices, Springer, Switzerland

  • Grobelny J, DelRio FW, Pradeep N et al (2011) Size measurement of nanoparticles using atomic force microscopy. Methods Mol Biol 697:71–82

    Article  Google Scholar 

  • Hussain JI, Kumar S, Hashmi AA, Khan Z (2011) Silver nanoparticles: preparation, characterization, and kinetics. Adv Mat Lett 2:188–194. doi:10.5185/amlett.2011.1206

    Article  Google Scholar 

  • Iffah N, Binti S, Ahmad MB, Shameli K (2015) Biosynthesis of silver nanoparticles using Artocarpus elasticus stem bark extract. Chem Cent J. doi:10.1186/s13065-015-0133-0

    Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2016) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406

    Google Scholar 

  • Jin NZ, Anniebell S, Gopinath SCB, Chen Y (2016) Variations in spontaneous assembly and disassembly of molecules on unmodified gold nanoparticles. Nanoscale Res Lett 11:399. doi:10.1186/s11671-016-1615-2

    Article  Google Scholar 

  • Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess 2:47. doi:10.1186/s40643-015-0076-2

    Article  Google Scholar 

  • Klapetek P, Valtr M, Nečas D et al (2011) Atomic force microscopy analysis of nanoparticles in non-ideal conditions. Nanoscale Res Lett 6:514. doi:10.1186/1556-276X-6-514

    Article  Google Scholar 

  • Kokura S, Handa O, Takagi T et al (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine Nanotechnol Biol Med 6:570–574. doi:10.1016/j.nano.2009.12.002

    Article  Google Scholar 

  • Kumar H, Rani R (2013) Structural characterization of silver nanoparticles synthesized by micro emulsion route. Int J Eng Innovative Technol 3:344–348

    Google Scholar 

  • Kumar S, Chaudhury K, Sen P, Guha SK (2005) Atomic force microscopy: a powerful tool for high-resolution imaging of spermatozoa. J Nanobiotechnology 3:9. doi:10.1186/1477-3155-3-9

    Article  Google Scholar 

  • Li Q, Li X (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomed 9:2399–2407

    Google Scholar 

  • Logaranjan K, Raiza AJ, Gopinath SCB et al (2016) Shape- and size-controlled synthesis of silver nanoparticles using aloe vera plant extract and their antimicrobial activity. Nanoscale Res Lett 11:520. doi:10.1186/s11671-016-1725-x

    Article  Google Scholar 

  • Magaldi S, Mata-Essayag S, Hartung de Capriles C et al (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8:39–45. doi:10.1016/j.ijid.2003.03.002

    Article  Google Scholar 

  • Maria SB, Devadiga A, Kodialbail VS, Saidutta MB (2015) Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Appl Nanosci. doi:10.1007/s13204-014-0372-8

    Google Scholar 

  • Moyo M, Gomba M, Nharingo T (2015) Afzelia quanzensis bark extract for green synthesis of silver nanoparticles and study of their antibacterial activity. Int J Ind Chem 6:329–338. doi:10.1007/s40090-015-0055-7

    Article  Google Scholar 

  • Namasivayam SKR, Christo BB, Arasu SMK et al (2013) Anti biofilm effect of biogenic silver nanoparticles coated medical devices against biofilm of clinical isolate of Staphylococcus Aureus. Global J Med Res 13:1–7

    Google Scholar 

  • Oluwaniyi OO, Adegoke HI (2016) Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Appl Nanosci 6:903–912. doi:10.1007/s13204-015-0505-8

    Article  Google Scholar 

  • Pacioni NL, Borsarelli CD, Rey V, Veglia AV (2015) Synthetic Routes for the Preparation of Silver Nanoparticles. A Mechanistic Perspective. In: Alarcon E, Griffith M, Udekwu KI (eds) Silver Nanoparticle Applications, In the fabrication and design of Medical and Biosensing devices, Springer, Switzerland, pp 13–46

  • Patakfalvi R, Oszkó A, Dékány I (2003) Synthesis and characterization of silver nanoparticle/kaolinite composites. Colloids Surf A Physicochem Eng Asp 220:45–50. doi:10.1016/S0927-7757(03)00056-6

    Article  Google Scholar 

  • Ponarulselvam S, Panneerselvam C, Murugan K et al (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2:574–580. doi:10.1016/S2221-1691(12)60100-2

    Article  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32

    Article  Google Scholar 

  • Pratheeba M, Rani KU, Ramesh B (2014) Studies on antimicrobial and anticancer activity of Solanum Trilobatum. Asian J Pharm Clin Res 7:213–219

    Google Scholar 

  • Rigo C, Ferroni L, Tocco I et al (2013) Active silver nanoparticles for wound healing. Int J Mol Sci 14:4817–4840. doi:10.3390/ijms14034817

    Article  Google Scholar 

  • Sasikala A, Rao ML, Savithramma N, Prasad TNVKV (2015) Synthesis of silver nanoparticles from stem bark of Cochlospermum religiosum (L.) Alston: an important medicinal plant and evaluation of their antimicrobial efficacy. Appl Nanosci 5:827–835. doi:10.1007/s13204-014-0380-8

    Article  Google Scholar 

  • Singh C, Baboota RK, Naik PK, Singh H (2012) Biocompatible synthesis of silver and gold nanoparticles using leaf extract of Dalbergia sissoo. Adv Mat Lett 3:279–284. doi:10.5185/amlett.2011.10312

    Article  Google Scholar 

  • Srikar SK, Giri DD, Pal DB et al (2016) Green synthesis of silver nanoparticles: a review. Green Sustain Chem 6:34–56

    Article  Google Scholar 

  • Suominen A, Li Y, Youtie J, Shapira P (2016) A bibliometric analysis of the development of next generation active nanotechnologies. J Nanoparticle Res 18:270. doi:10.1007/s11051-016-3578-8

    Article  Google Scholar 

  • Umoren SA, Obot IB, Gasem ZM (2014) Green synthesis and characterization of silver nanoparticles using Red Apple (Malus domestica) fruit extract at room temperature. J Mater Environ Sci 5:907–914

    Google Scholar 

  • Vanaja M, Rajeshkumar S, Paulkumar K et al (2013) Kinetic study on green synthesis of silver nanoparticles using Coleus aromaticus leaf extract. Adv Appl Sci Res 4:50–55

    Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G et al (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6:95–101. doi:10.1016/S1995-7645(13)60002-4

    Article  Google Scholar 

  • Velusamy P, Su CH, Kumar GV et al (2016) Biopolymers regulate silver nanoparticle under microwave irradiation for effective antibacterial and antibiofilm activities. PLoS One 11:1–14. doi:10.1371/journal.pone.0157612

    Google Scholar 

  • Verma A, Mehata MS (2015) Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J Radiat Res Appl Sci 9:109–115. doi:10.1016/j.jrras.2015.11.001

    Article  Google Scholar 

  • Zhang S, Tang Y, Vlahovic B (2016) A review on preparation and applications of silver-containing nanofibers. Nanoscale Res Lett 11:80. doi:10.1186/s11671-016-1286-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subash C. B. Gopinath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, S., Gopinath, S.C.B. Potentials in synthesizing nanostructured silver particles. Microsyst Technol 23, 4345–4357 (2017). https://doi.org/10.1007/s00542-017-3382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3382-0

Keywords

Navigation