Skip to main content
Log in

Size-dependent asymmetric buckling of initially curved shallow nano-beam using strain gradient elasticity

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We have investigated the size-dependency of symmetric and asymmetric buckling in an electrostatically actuated initially curved (arch) stress-free shallow nano-beam. Using the double-mode Galerkin projection method, we have converted the partial differential equation of motion of the arch, given in the framework of Euler–Bernoulli beam and the strain gradient elasticity, to a two-degree-of-freedom model which is capable of accounting for the symmetric and asymmetric instabilities as well as the size-dependencies. Analyzing the bifurcation diagrams of the obtained reduced-order model, we have shown that the symmetric snap-through, release and pull-in instabilities, as well as the asymmetric buckling of the arch are all size-dependent. Our studies show that, as the structure scales down, possibility of the snap-through and the symmetry breaking reduces. We have derived analytical necessary conditions for prediction of the size-dependent snap-through and symmetry breaking. We further have shown that the sufficient condition for the threshold snap-through, during which the asymmetric buckling occurs prior to the symmetric snap-through, is also size-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akgöz B, Civalek Ö (2013) Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos Struct 98:314–322. doi:10.1016/j.compstruct.2012.11.020

    Article  Google Scholar 

  • Alemansour H, Maani Miandoab E, Nejat Pishkenari H (2017) Effect of size on the chaotic behavior of nano resonators. Commun Nonlinear Sci Numer Simul 44:495–505. doi:10.1016/j.cnsns.2016.09.010

    Article  MathSciNet  Google Scholar 

  • Amini Khoiy K, Amini R (2016) On the biaxial mechanical response of porcine tricuspid valve leaflets. J Biomech Eng 138:104504. doi:10.1115/1.4034426

    Article  Google Scholar 

  • Amini Khoiy K, Biswas D, Decker TN et al (2016) Surface strains of porcine tricuspid valve septal leaflets measured in ex vivo beating hearts. J Biomech Eng 138:111006. doi:10.1115/1.4034621

    Article  Google Scholar 

  • Camescasse B, Fernandes A, Pouget J (2014) Bistable buckled beam and force actuation: experimental validations. Int J Solids Struct 51:1750–1757. doi:10.1016/j.ijsolstr.2014.01.017

    Article  Google Scholar 

  • Charlot B, Sun W, Yamashita K et al (2008) Bistable nanowire for micromechanical memory. J Micromech Microeng 18:45005. doi:10.1088/0960-1317/18/4/045005

    Article  Google Scholar 

  • Chen J, Chang D (2007) Snapping of a shallow arch with harmonic excitation at one end. J Vib Acoust 129:514–519. doi:10.1115/1.2748479

    Article  Google Scholar 

  • Das K, Batra RC (2009a) Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. J Micromech Microeng 19:35008. doi:10.1088/0960-1317/19/3/035008

    Article  Google Scholar 

  • Das K, Batra RC (2009b) Symmetry breaking, snap-through and pull-in instabilities under dynamic loading of microelectromechanical shallow arches. Smart Mater Struct 18:115008. doi:10.1088/0964-1726/18/11/115008

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH, Amabili M (2013) Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int J Eng Sci 68:11–23. doi:10.1016/j.ijengsci.2013.03.001

    Article  MathSciNet  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  • Fu Y, Zhang J, Jiang Y (2010) Influences of the surface energies on the nonlinear static and dynamic behaviors of nanobeams. Phys E Low Dimens Syst Nanostruct 42:2268–2273. doi:10.1016/j.physe.2010.05.001

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2013) Nonlinear behaviour of electrically actuated MEMS resonators. Int J Eng Sci 71:137–155

    Article  Google Scholar 

  • Intaraprasonk V, Fan S (2011) Nonvolatile bistable all-optical switch from mechanical buckling. Appl Phys Lett 98:241104. doi:10.1063/1.3600335

    Article  Google Scholar 

  • Kong S, Zhou S, Nie Z, Wang K (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47:487–498. doi:10.1016/j.ijengsci.2008.08.008

    Article  MathSciNet  MATH  Google Scholar 

  • Krylov S, Dick N (2010) Dynamic stability of electrostatically actuated initially curved shallow micro beams. Contin Mech Thermodyn 22:445–468. doi:10.1007/s00161-010-0149-6

    Article  MathSciNet  MATH  Google Scholar 

  • Krylov S, Ilic BR, Schreiber D et al (2008) The pull-in behavior of electrostatically actuated bistable microstructures. J Micromech Microeng 18:55026. doi:10.1088/0960-1317/18/5/055026

    Article  Google Scholar 

  • Krylov S, Ilic B, Lulinsky S (2011) Bistability of curved microbeams actuated by fringing electrostatic fields. Nonlinear Dyn 66:403–426

    Article  MathSciNet  Google Scholar 

  • Lam DCC, Yang F, Chong ACM et al (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508. doi:10.1016/S0022-5096(03)00053-X

    Article  MATH  Google Scholar 

  • Maani Miandoab E, Yousefi-Koma A, Nejat Pishkenari H, Tajaddodianfar F (2014) Study of nonlinear dynamics and chaos in MEMS/NEMS resonators. Commun Nonlinear Sci Numer Simul. doi:10.1016/j.cnsns.2014.07.007

    MATH  Google Scholar 

  • Maani Miandoab E, Nejat Pishkenari H, Yousefi-Koma A (2015a) Dynamic analysis of electrostatically actuated nanobeam based on strain gradient theory. Int J Struct Stab Dyn 15:1450059. doi:10.1142/S021945541450059X

    Article  MathSciNet  MATH  Google Scholar 

  • Maani Miandoab E, Tajaddodianfar F, Nejat Pishkenari H, Ouakad HM (2015b) Analytical solution for the forced vibrations of a nano-resonator with cubic nonlinearities using homotopy analysis method. Int J Nanosci Nanotechnol 11:159–166

    Google Scholar 

  • Maani Miandoab E, Yousefi-Koma A, Nejat Pishkenari H, Tajaddodianfar F (2015c) Study of nonlinear dynamics and chaos in MEMS/NEMS resonators. Commun Nonlinear Sci Numer Simul 22:611–622. doi:10.1016/j.cnsns.2014.07.007

    Article  MATH  Google Scholar 

  • Medina L, Gilat R, Krylov S (2012) Symmetry breaking in an initially curved micro beam loaded by a distributed electrostatic force. Int J Solids Struct 49:1864–1876. doi:10.1016/j.ijsolstr.2012.03.040

    Article  Google Scholar 

  • Medina L, Gilat R, Ilic B, Krylov S (2014a) Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams. Sens Actuators A Phys 220:323–332. doi:10.1016/j.sna.2014.10.016

    Article  Google Scholar 

  • Medina L, Gilat R, Krylov S (2014b) Symmetry breaking in an initially curved pre-stressed micro beam loaded by a distributed electrostatic force. Int J Solids Struct 51:2047–2061. doi:10.1016/j.ijsolstr.2014.02.010

    Article  Google Scholar 

  • Mustapha KB, Ruan D (2015) Size-dependent axial dynamics of magnetically-sensitive strain gradient microbars with end attachments. Int J Mech Sci 94–95:96–110. doi:10.1016/j.ijmecsci.2015.02.010

    Article  Google Scholar 

  • Namazu T, Isono Y, Tanaka T (2000) Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J Microelectromech Syst 9:450–459. doi:10.1109/84.896765

    Article  Google Scholar 

  • Nejat Pishkenari H, Afsharmanesh B, Tajaddodianfar F (2015) Continuum models calibrated with atomistic simulations for the transverse vibrations of silicon nanowires. Int J Eng Sci 100:8–24. doi:10.1016/j.ijengsci.2015.11.005

    Article  Google Scholar 

  • Plaut RH (2009) Snap-through of shallow elastic arches under end moments. J Appl Mech 76:14504. doi:10.1115/1.3000020

    Article  Google Scholar 

  • Plaut RH (2015) Snap-through of arches and buckled beams under unilateral displacement control. Int J Solids Struct. doi:10.1016/j.ijsolstr.2015.02.044

    Google Scholar 

  • Reddy JN (2010) Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci 48:1507–1518. doi:10.1016/j.ijengsci.2010.09.020

    Article  MathSciNet  MATH  Google Scholar 

  • Seyranian AP, Elishakoff I (1989) Modern problems of structural stability. Springer, Vienna

    MATH  Google Scholar 

  • Simitses GJ (1990) Dynamic stability of suddenly loaded structures. Springer, Berlin

    Book  MATH  Google Scholar 

  • Southworth DR, Bellan LM, Linzon Y et al (2010) Stress-based vapor sensing using resonant microbridges. Appl Phys Lett 96:163503

    Article  Google Scholar 

  • Tajaddodianfar F, Hairi Yazdi MR, Nejat Pishkenari H (2014a) Dynamics of bistable initially curved shallow microbeams: effects of the electrostatic fringing fields. In: 2014 IEEE/ASME international conference on advanced intelligent mechatronics. Besancon, France, pp 1279–1283

  • Tajaddodianfar F, Hairi Yazdi MR, Nejat Pishkenari H, Maani Miandoab E (2014b) Nonlinear dynamics of electrostatically actuated micro-resonator: analytical solution by homotopy perturbation method. In: 2014 IEEE/ASME international conference on advanced intelligent mechatronics. Besancon, France, pp 1284–1289

  • Tajaddodianfar F, Hairi Yazdi M, Nejat Pishkenari H (2015a) On the chaotic vibrations of electrostatically actuated arch micro/nano resonators: a parametric study. Int J Bifurc Chaos 25:1550106. doi:10.1142/S0218127415501060

    Article  MATH  Google Scholar 

  • Tajaddodianfar F, Hairi Yazdi MR, Nejat Pishkenari H et al (2015b) Classification of the nonlinear dynamics in an initially curved bistable micro/nano-electro-mechanical system resonator. Micro Nano Lett 10:583–588. doi:10.1049/mnl.2015.0087

    Article  MATH  Google Scholar 

  • Tajaddodianfar F, Nejat Pishkenari H, Hairi Yazdi M, Maani Miandoab E (2015c) On the dynamics of bistable micro/nano resonators: analytical solution and nonlinear behavior. Commun Nonlinear Sci Numer Simul 20:1078–1089. doi:10.1016/j.cnsns.2014.06.048

    Article  MathSciNet  MATH  Google Scholar 

  • Tajaddodianfar F, Nejat Pishkenari H, Hairi Yazdi M, Maani Miandoab E (2015d) Size-dependent bistability of an electrostatically actuated arch NEMS based on strain gradient theory. J Phys D Appl Phys 48:245503. doi:10.1088/0022-3727/48/24/245503

    Article  Google Scholar 

  • Tajaddodianfar F, Hairi Yazdi MR, Nejat Pishkenari H (2016a) Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method. Microsyst Technol. doi:10.1007/s00542-016-2947-7

    MATH  Google Scholar 

  • Tajaddodianfar F, Nejat Pishkenari H, Hairi Yazdi MR (2016b) Prediction of chaos in electrostatically actuated arch micro-nano resonators: analytical approach. Commun Nonlinear Sci Numer Simul 30:182–195. doi:10.1016/j.cnsns.2015.06.013

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Huang Q-A, Yu H (2008) Size and temperature dependence of Young’s modulus of a silicon nano-plate. J Phys D Appl Phys 41:165406. doi:10.1088/0022-3727/41/16/165406

    Article  Google Scholar 

  • Wang B, Zhou S, Zhao J, Chen X (2011) Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS. J Micromech Microeng 21:27001. doi:10.1088/0960-1317/21/2/027001

    Article  Google Scholar 

  • Younis MI, Ouakad HM, Alsaleem FM et al (2010) Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. J Microelectromech Syst 19:647–656

    Article  Google Scholar 

  • Zhang Y, Wang Y, Li Z et al (2007) Snap-through and pull-in instabilities of an arch-shaped beam under an electrostatic loading. J Microelectromech Syst 16:684–693

    Article  Google Scholar 

  • Zhang W-M, Yan H, Peng Z-K, Meng G (2014) Electrostatic pull-in instability in MEMS/NEMS: a review. Sens Actuators A Phys 214:187–218. doi:10.1016/j.sna.2014.04.025

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Natural Sciences and Engineering Research Council of Canada (Grant No. 129619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaamran Raahemifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raahemifar, K. Size-dependent asymmetric buckling of initially curved shallow nano-beam using strain gradient elasticity. Microsyst Technol 23, 4567–4578 (2017). https://doi.org/10.1007/s00542-016-3249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3249-9

Keywords

Navigation