Skip to main content
Log in

Analytical study on effect of piezoelectric patterns on frequency shift and support loss in ring-shaped resonators for biomedical applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

One of the most vital issue in FBAR is enhancing mass sensitivity and restraining energy loss. A ring-shaped piezoelectric resonator was proposed for biomedical applications. The proposed ring-shaped resonator comprises with a multilayer of Pt/Ti/PZT/Ti/Pt/SiO2, deposited on the silicon-on-insulator wafer and expected to be a contour mode. The ring-shaped resonator reacts to certain voltage vibration with a mass perturbation to get Eigenstate vibration or frequency shifts which could be transferred to electrical signals by converse piezoelectric effect. In this paper, vibration modes with high-frequency shift due to a small mass perturbation of 10 ng are analytical evaluated to achieve a higher sensitivity. In order to estimate the sensitivity of the ring-shaped resonator against the mass perturbation, the simulated analysis is conducted by COMSOL from two aspects including (a) the effect of PZT pattern miniaturization and distribution on frequency shift (from viewpoint of vibration mode shape); (b) achieving low support energy loss through analyzing the support displacement. It is found that frequency shift of PZT pattern C with Eigenstate mode 5 is higher than that of others and the support displacement is also small for this combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baghelani M, Ghavifekr HB, Ebrahimi A (2011) Analysis and suppression of spurious modes of the ring shape anchored RF MEMS contour mode disk resonator. Microsyst Technol Micro Nanosyst Inf Storage Process Syst 17:1599–1609. doi:10.1007/s00542-011-1352-5

    Google Scholar 

  • Basu J, Bhattacharyya TK (2011) Microelectromechanical resonators for radio frequency communication applications. Microsyst Technol Micro Nanosyst Inf Storage Process Syst 17:1557–1580. doi:10.1007/s00542-011-1332-9

    Google Scholar 

  • Clark JR, Hsu WT, Abdelmoneum MA, Nguyen CTC (2005) High-Q UHF micromechanical radial-contour mode disk resonators. J Microelectromech Syst 14:1298–1310. doi:10.1109/Jmems.2005.856675

    Article  Google Scholar 

  • Ekinci KL, Yang YT, Roukes ML (2004) Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys 95:2682–2689. doi:10.1063/1.1642738

    Article  Google Scholar 

  • Hao ZL, Erbil A, Ayazi F (2003) An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations. Sens Actuators A Phys 109:156–164. doi:10.1016/j.sna.2003.09.037

    Article  Google Scholar 

  • Houston BH, Photiadis DM, Marcus MH, Bucaro JA, Liu X, Vignola JF (2002) Thermoelastic loss in microscale oscillators. Appl Phys Lett 80:1300–1302. doi:10.1063/1.1449534

    Article  Google Scholar 

  • Jonsson M, Anderson H, Lindberg U, Aastrup T (2007) Quartz crystal microbalance biosensor design II. Simulation of sample transport. Sens Actuators B Chem 123:21–26. doi:10.1016/j.snb.2006.07.028

    Article  Google Scholar 

  • Lakin KM (2003) A review of thin-film resonator technology. IEEE Microw Mag 4:61–67. doi:10.1109/Mmw.2003.1266067

    Article  Google Scholar 

  • Lanz R, Muralt P (2005) Bandpass filters for 8 GHz using solidly mounted bulk acoustic wave resonators. IEEE Trans Ultrason Ferroelectr Freq Control 52:936–946. doi:10.1109/Tuffc.2005.1504014

    Article  Google Scholar 

  • Li SS, Lin YW, Yuan X, Ren ZY, Nguyen CTC (2004) Micromechanical "hollow-disk" ring resonators. In: Micro electro mechanical systems, 2004. 17th IEEE International Conference on. (MEMS), 2004. pp 821–824. doi:10.1109/MEMS.2004.1290711

  • Lu JA, Suga T, Zhang Y, Itoh T, Maeda R, Mihara T (2010) Micromachined silicon disk resonator transduced by piezoelectric lead zirconate titanate thin films. Jpn J Appl Phys 49:06gn17. doi:10.1143/JJAP.49.06GN17

    Google Scholar 

  • Lu JA, Yi Z, Itoh T, Maeda R (2011) Design, fabrication, and integration of piezoelectric MEMS devices for applications in wireless sensor network. In: Design, test, integration and packaging of MEMS/MOEMS (DTIP), 2011 symposium on, 11–13 May 2011, pp 217–221

  • Oka T, Tanigawa H, Suzuki K (2010) Characterization of four-points-pinned ring-shaped silicon microelectromechanical systems resonator. Jpn J Appl Phys 49:73–85. doi:10.1143/JJAP.49.06GN05

    Google Scholar 

  • Oliveira EB, Gotschlich C, Liu TY (1979) Primary structure of human C-reactive protein. J Biol Chem 254:489–502

    Google Scholar 

  • O’Sullivan CK, Guilbault GG (1999) Commercial quartz crystal microbalances—theory and applications. Biosens Bioelectron 14:663–670. doi:10.1016/S0956-5663(99)00040-8

    Article  Google Scholar 

  • Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155:206–222. doi:10.1007/BF01337937

    Article  Google Scholar 

  • Srikar VT, Senturia SD (2002) Thermoelastic damping in fine-grained polysilicon flexural beam resonators. J Microelectromech Syst 11:499–504. doi:10.1109/Jmems.2002.802902

    Article  Google Scholar 

  • Wang J, Ren ZY, Nguyen CTC (2003) 1.14-GHz self-aligned vibrating micromechanical disk resonator. IEEE Rad Freq Integr 51:335–338

  • Wang J, Ren ZY, Nguyen CTC (2004) 1.156-GHz self-aligned vibrating micromechanical disk resonator. IEEE Trans Ultrason Ferroelectr Freq Control 51:1607–1628. doi:10.1109/Tuffc.2004.1386679

    Article  Google Scholar 

  • Wang DF, Li XQ, Lu J, Sagawa T, Maeda R (2011) Ring-shaped PZT Film resonator for bio-sensing applications in liquid environment. Proc Eng. doi:10.1016/j.proeng.2011.12.110

    Google Scholar 

  • Wang DF, Sagawa T, Lu J, Maeda R (2012) Analytical study on effect of ring geometry on frequency shift of piezoelectric ring-shaped resonator. Microsyst Technol Micro Nanosyst Inf Storage Process Syst 18:773–778. doi:10.1007/s00542-012-1521-1

    Google Scholar 

  • Wang DF, Sagawa T, Lu J, Maeda R (2013) An analytical study of the effect of a support geometry on frequency shift and support loss of piezoelectric ring-shaped resonators for healthcare and environmental applications. Microsyst Technol Micro Nanosyst Inf Storage Process Syst 19:503–508. doi:10.1007/s00542-012-1632-8

    Google Scholar 

  • Wang DK et al (2015) Optimization of piezoelectric pattern design in ring-shaped resonators for health-care and environmental applications. EUROSENSORS 2015(6–9):528–531. doi:10.1016/j.proeng.2015.08.694

    Google Scholar 

  • Weber J, Albers WM, Tuppurainen J, Link M, Gabl R, Wersing W, Schreiter M (2006) Shear mode FBARs as highly sensitive liquid biosensors. Sens Actuators A Phys 128:84–88. doi:10.1016/j.sna.2006.01.005

    Article  Google Scholar 

  • Wenzel SW, White RM (1989) Analytic comparison of the sensitivities of bulk-wave, surface-wave, and flexural plate-wave ultrasonic gravimetric sensors. Appl Phys Lett 54:1976–1978. doi:10.1063/1.101189

  • Xu WC, Zhang X, Yu HY, Abbaspour-Tamijani A, Chae J (2009) In-liquid quality factor improvement for film bulk acoustic resonators by integration of microfluidic channels. IEEE Electron Device Lett 30:647–649. doi:10.1109/Led.2009.2019973

    Article  Google Scholar 

  • Xu W, Choi S, Chae J (2010) A contour-mode film bulk acoustic resonator of high quality factor in a liquid environment for biosensing applications. Appl Phys Lett 96:053703. doi:10.1063/1.3309586

    Article  Google Scholar 

  • Xu W, Appel J, Chae J (2011) Contour-mode film bulk acoustic resonator for monitoring blood coagulation in real-time. In: 2011 16th international solid-state sensors, actuators and microsystems conference, 5–9 June 2011, pp 2871–2874. doi:10.1109/TRANSDUCERS.2011.5969227

  • Yan L, Pang W, Kim ES, Tang WC (2005) Piezoelectrically transduced low-impedance microelectromechanical resonators. Appl Phys Lett 87:154103. doi:10.1063/1.2089152

    Article  Google Scholar 

  • Yan Z et al (2007) ZnO-based film bulk acoustic resonator for high sensitivity biosensor applications. Appl Phys Lett 90:143503. doi:10.1063/1.2719149

    Article  Google Scholar 

  • Zhang H, Marma MS, Kim ES, McKenna CE, Thompson ME (2005) A film bulk acoustic resonator in liquid environments. J Micromech Microeng 15:1911–1916. doi:10.1088/0960-1317/15/10/017

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work is financially supported by Jilin University Matching Funds for Leading Professor Program, Scientific Research Funds of 985 Project, and by the Japan Society for the Promotion of Science through the ‘Funding Progarm for World-Leading Innovative R&D on Science and Technology’, initiated by the Council for Science and Technology Policy. The authors would like to thank Mr. Takahisa Sagawa, Dr. Jian Lu and Dr. Ryutaro Maeda (presently with Research Center for Ubiquitous MEMS and Micro Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8564, Japan) for research assistance. Special thanks are also given to Prof. Z. Y. Mao at Zhejiang University (Hangzhou, China), and Prof. M. Esashi at Tohoku University (Sendai, Japan) for their continuous supports and profound encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong F. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, D. & Wang, D.F. Analytical study on effect of piezoelectric patterns on frequency shift and support loss in ring-shaped resonators for biomedical applications. Microsyst Technol 23, 2899–2909 (2017). https://doi.org/10.1007/s00542-016-3112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3112-z

Keywords

Navigation