Skip to main content

Advertisement

Log in

Non-invasive voltage measurement in a three-phase autonomous meter

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Monitoring current and voltage waveforms is essential to evaluate the energy consumption of a system and to improve its efficiency. In this paper we present a smart meter for power consumption which can measure both current and voltage without any physical contact to the electric load or to the conductors of the power cables. This makes the power metering much safer and easier; furthermore an energy harvesting module based on inductive coupling provides power supply to the meter without any need of batteries or plugs to the mains. We describe the innovative contact-less voltage measurement system, which is based on capacitive coupling and uses an algorithm with two pre-processing channels for self-calibration and to provide accurate measurements regardless the cable type. The three-phase version is capable of measuring the three-phase power consumption of an electric load in a complete contact-less manner. In comparison with commercial high-cost instruments, experimental results of our low-cost smart meter demonstrate similar high performance with maximum 3 % deviation from the reference value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.flexgrid.it/eng/prodotti/flexkey.html.

References

  • Ahmad S (2011) “Smart metering and home automation solutions for the next decade,” in Proc. of the international conference on Emerging Trends in Networks and Computer Communications, (ETNCC 2011), Apr 22–24 2011, pp 200–204

  • Alahakoon D, Yu X (2016) Smart electricity meter data intelligence for future energy systems: a survey. IEEE Trans Ind Inform 12(1):425–436

    Google Scholar 

  • Alimardani A, Therrien F, Atanackovic D, Jatskevich J, Vaahedi E (2015) Distribution system state estimation based on nonsynchronized smart meters. IEEE Trans Smart Grid 6(6):2919–2928

    Article  Google Scholar 

  • Amin SM, Wollenberg B (2005) Toward a smart grid: power delivery for the 21st century. IEEE Power Energy Magazine 3:34–41

    Article  Google Scholar 

  • Balsamo D, Porcarelli D, Brunelli D, Benini L (2013) “A new non-invasive voltage measurement method for wireless analysis of electrical parameters and power quality,” IEEE

  • Borkowski D, Wetula A, Bien A (2015) Contactless measurement of substation busbars voltages and waveforms reconstruction using electric field sensors and artificial neural network. IEEE Trans Smart Grid 6(3):1560–1569

    Article  Google Scholar 

  • Campbell B, Dutta P (2014) “Gemini: a non-invasive, energy-harvesting true power meter,” in Real-Time Systems Symposium (RTSS), 2014 IEEE (pp 324–333)

  • Chen Y, Hsu W, Cheng S, Cheng Y (2014) A power sensor tag with interference reduction for electricity monitoring of two-wire household appliances. IEEE Trans Industr Electron 61(4):2062–2070

    Article  Google Scholar 

  • Depuru S, Wang L, Devabhaktuni V, Gudi N (2011) “Smart meters for power grid, challenges, issues, advantages and status,” Power Systems Conference and Exposition (PSCE), 2011 IEEE/PES

  • “Earth Overshoot Day.” [Online]. Available: http://www.footprintnetwork.org/en/index.php/GFN/page/earth_overshoot_day

  • “Energy@home.” [Online]. Available: http://www.energy-home.it

  • Kubo T, Furukawa T, Fukumoto H, Ohchi M (2009) “Numerical estimation of characteristics of voltage-current sensor of resin molded type for 22kv power distribution systems,” in ICCAS-SICE, pp 5050–5054

  • Liang J, Ng SK, Kendall G, John WM, Cheng (2010) “Load signature study—part 2: disaggregation framework, simulation, and applications,” Power Delivery, IEEE Transactions on, vol. 25, no. 2, pp 561–569

  • Liang J, Ng SK, Kendall G, Cheng JW (2010b) Load signature study—part 1: basic concept, structure, and methodology. IEEE Trans Power Deliv 25(2):551–560

    Article  Google Scholar 

  • Misti SN, Birkett M, Bell D, Penlington R (2014) “A new trimming approach for shunt resistors used in metering applications,” Electronic Design (ICED), 2014 2nd International Conference on, vol., no., pp 94–99, 19–21

  • Mitra R, Kota R, Bandyopadhyay S, Arya V, Sullivan B, Mueller R, Storey H, Labut G (2015) Voltage Correlations in Smart Meter Data. Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ‘15). ACM, New York, pp 1999–2008

    Chapter  Google Scholar 

  • Porcarelli D, Balsamo D, Brunelli D, Paci G (2013) “Perpetual and lowcost power meter for monitoring residential and industrial appliances,” in Design, Automation Test in Europe Conference Exhibition, pp 1155–1160

  • Quilumba FL, Wei-Jen Lee, Heng Huang, Wang DY, Szabados RL (2015) “Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities,” in Smart Grid, IEEE Transactions on, vol. 6, no. 2, pp 911–918

  • Ripka P (2010) “Electric current sensor: a review,” Meas Sci Technol, vol. 21, no. 11, pp 112001-1–112001-23

  • Tsang K, Chan W (2011) Dual capacitive sensors for non-contact ac voltage measurement. Sens Actuators A 167(2):261–266

    Article  MathSciNet  Google Scholar 

  • Villani C, Balsamo D, Brunelli D, Benini L (2015) “Ultra-low power sensor for autonomous non-invasive voltage measurement in IoT solutions for energy efficiency,” in Proc. SPIE 9517, Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems, 95172I

  • Waeresch D, Brandalik R, Wellssow WH, Jordan J, Bischler R, Schneider N (2015) “Linear state estimation in low voltage grids based on smart meter data,” in PowerTech, 2015 IEEE Eindhoven, vol., no., pp1–6

  • Wu L, Wouters P, van Heesch E, Steennis E (2011) “On-site voltage measurement with capacitive sensors on high voltage systems”, in PowerTech. IEEE Trondheim 2011:1–6

    Google Scholar 

  • Xiao C (2003) “An overview of integratable current sensor technologies,” in Conf. Rec. IEEE 38th IAS Annu. Meeting, Salt Lake City, UT, USA, vol. 2, pp 1251–1258

  • Ziegler S, Woodward RC, Iu HH, Borle LJ (2009) Electric current sensors: a review. IEEE Sensors J 9(4):354–376

    Article  Google Scholar 

Download references

Acknowledgments

The research contribution presented in this paper has been supported by a research Grant from Telecom Italia, by the project FLEXMETER (Grant no: 646568) funded by the EU H2020 Framework Programme, and by the ARTEMIS Innovation Pilot Project: ARROWHEAD (Grant no: 332987) funded by the ARTEMIS Joint Undertaking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Brunelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunelli, D., Villani, C., Balsamo, D. et al. Non-invasive voltage measurement in a three-phase autonomous meter. Microsyst Technol 22, 1915–1926 (2016). https://doi.org/10.1007/s00542-016-2890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2890-7

Keywords

Navigation