Skip to main content

Advertisement

Log in

mm-wave integrated wireless transceiver: enabling technology for high bandwidth short-range networking in cyber physical systems

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Emerging application scenarios for Cyber Physical Systems often require the networking of sensing and actuation nodes at high data rate and through wireless links. Lot of surveillance and control systems adopt as input sensors distributed video cameras operating at different spectral ranges and covering different fields of view. Arrays of radio/light detection and ranging (Radar/Lidar) sensors are often used to detect the presence of targets, of their speeds, distance and direction. The relevant bandwidth requirement amounts to some Gbps. The wireless connection is essential for easy and flexible deployment of the sensing/actuation nodes. A key technology to keep low the size and weight of the nodes is the fully integration at mm-waves of wireless transceivers sustaining Gbps data rate. To this aim, this paper presents the design of 60 GHz transceiver key blocks (Low Noise Amplifier, Power Amplifier, Antenna) to ensure connection distances up to 10 m and data rate of several Gbps. Around 60 GHz there are freely-available (unlicensed) worldwide several GHz of bandwidth. By using a CMOS Silicon-on-Insulator technology RF, analog and digital baseband circuitry can be integrated single-chip minimizing noise coupling. At mm-wave the wavelength is few mm and hence even the antenna is integrated on chip reducing cost and size vs. off-chip antenna solutions. The proposed transceiver enables at physical layer the implementation in compact nodes of links with data rates of several Gbps and up to 10 m distance; this is suited for home/office scenarios, or on-board vehicles (cars, trains, ships, airplanes) or body area networks for healthcare and wellness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Saponara S et al (2009) Architectural exploration and design of time- interleaved SAR arrays for low-power and high speed A/D converters. In: IEICE Trans Electr, vol. E92-C, n. 6, pp 843–851

  • Tsukizawa T et al (2013) A fully integrated 60 GHz CMOS transceiver chipset based on WiGig/IEEE802.11ad with built-in self-calibration for mobile applications. In: IEEE ISSCC, pp 230–231

  • Saponara S et al (2014) Design of a 2 Gb/s transceiver at 60 GHz with integrated antenna in bulk CMOS technology. In: IEEE EUMIC, pp 33–36

  • Geddada HM et al (2014) Transceiver with an integrated RX/TX configurable passive network, patent US 20140206301 A1, July 2014

  • Chong W et al (2014) A 60 GHz down-conversion mixer using a novel topology in 65 nm CMOS. In: IEEE PRIME, pp 1–4

  • Saponara S et al (2015) Gbps wireless transceivers for high band width interconnections in distributed cyber physical systems. In: SPIE Microtech., Smart sensors, actuators and MEMS VII and Cyber Physical System, vol 9517, 95172L, pp 1–7

  • Andrews J et al (2014) What will 5G be? IEEE J Sel Areas Comm. 32(6):1065–1082

    Article  Google Scholar 

  • Baki RA (2006) Distortion in RF CMOS short-channel low-noise amplifiers. In: IEEE Trans. on Microwave Theory and Techniques, vol. 54, n. 1, 2006, pp 46–56

  • Dickson T et al (2006) The invariance of characteristic current densities in nanoscale MOSFETs and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks. IEEE J Solid State Circ 41(8):1830–1845

    Article  Google Scholar 

  • Fang-Jing Wu et al (2011) From wireless sensor networks towards cyber physical systems. Pervasive Mobile Comput 7(4):397–413

    Article  Google Scholar 

  • Fanucci L et al (2001) A parametric VLSI architecture for video motion estimation. Integr VLSI J 31(1):79–100

    Article  MATH  Google Scholar 

  • Lee EA (2010) CPS foundations. In: IEEE DAC, pp 737–742

  • Lu CY (2014) Real-time wireless control networks for Cyber-Physical Systems. In: IEEE INFOCOM

  • Lumpkins W (2014) The internet of things meets cloud computing. IEEE Consum Electr Mag 2(2):47–51

    Article  Google Scholar 

  • Martineau B (2008) Potentialités de la technologie CMOS 65 nm SOI pour des applications sans fils en bande millimétrique, PhD thesis

  • Saponara S, Neri B (2012) Integrated 60 GHz antenna, LNA and fast ADC architecture for embedded systems with wireless Gbit connectivity. J Circ Syst Comput 21(5)

  • Sheng Zhengguo et al (2013) A survey on the IETF protocol suite for the internet of things: standards, challenges, and opportunities. IEEE Wireless Commun 20(6):91–98

    Article  Google Scholar 

  • Siligaris A et al (2011) A 65 nm CMOS fully integrated transceiver module for 60 GHz wireless HD applications. IEEE J Solid State Circ 46(12):3005–3017

    Article  Google Scholar 

  • Tubbax J et al (2001) OFDM versus single carrier with cyclic prefix: a system-based comparison for binary modulation. IEEE VTC 2:1115–1119

    Google Scholar 

  • Vaughan JSN (2010) Gigabit Wi-Fi is on its way. IEEE Comput 43(11):11–14

    Article  Google Scholar 

  • Voinigescu S et al (2007) Algorithmic design of CMOS LNAs and PAs for 60 GHz radio. IEEE J Solid State Circ 42(5):1044–1057

    Article  Google Scholar 

  • Wean J et al (2013) Cloud-enabled wireless body area networks for pervasive healthcare. IEEE Network 27(5):56–61

    Article  Google Scholar 

  • Weyers C, Mayr P, Kunze JW, Langmann U (2008) A 22.3 dB voltage gain 6.1 dB NF 60 GHz LNA in 65 nm CMOS with differential output. In: IEEE ISSCC

  • Abbasi M et al. (2010) A broadband differential cascode power amplifier in 45 nm CMOS for high-speed 60 GHz system-on-chip. In: IEEE RFIC, pp 533–536

  • Raczkowski K et al (2009) 50-to-67 GHz ESD-protected power amplifiers in digital 45 nm LP CMOS. In: IEEE ISSCC Dig. Tech. Papers, pp 382–383

  • Kang K et al (2009) A power efficient 60 GHz 90 nm CMOS OOK receiver with on chip-antenna. In: IEEE RFIT, pp 36–39

  • Byeon CW et al (2013) A 67-mW 10.7-Gb/s 60-GHz OOK CMOS transceiver for short-range wireless communications. IEEE Trans Microw Theor Tech 61(9): 3391–3401

  • Juntunen E et al (2010) A 60 GHz 38-pj/bit 3.5-Gbps 90-nm CMOS OOK digital radio. IEEE Trans Microw Theor Tech. 58(2):348–353

    Article  Google Scholar 

  • Kang Kai et al (2010) A power efficient 60 GHz 90 nm CMOS OOK receiver with on-chip antenna. IEEE J Solid State Circ 45(9):1720–1731

    Article  Google Scholar 

  • Lee Jri et al (2010) A low-power low-cost fully integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly. IEEE J Solid State Circ 45(2):264–275

    Article  Google Scholar 

  • Saponara S, Neri B (2015) Fully integrated 60 GHz transceiver for wireless HD/Wigig short-range multi-Gbit connections. Lect Notes Electr Eng. 351:131–137

    Article  Google Scholar 

  • Wei F, Hao Y, Yang S, Kiat SY (2013) “A 2-D distributed power-combining by metamaterial-based zero phase shifter for 60-GHz power amplifier in 65-nm CMOS. IEEE Trans Microw Theor Tech 61(1):505–516

    Article  Google Scholar 

  • Yilmaz T, Fadel E, Akan OB (2014) Employing 60 GHz ISM band for 5G wireless communications. In: IEEE BlackSeaCom

Download references

Acknowledgments

Discussions with F. Giannetti, R. Massini, M. Bernardini, L. Matti are gratefully acknowledged. Work supported by the Newcom# EU Network of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Saponara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saponara, S., Neri, B. mm-wave integrated wireless transceiver: enabling technology for high bandwidth short-range networking in cyber physical systems. Microsyst Technol 22, 1893–1903 (2016). https://doi.org/10.1007/s00542-016-2888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2888-1

Keywords

Navigation