Skip to main content
Log in

Micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A new micro molecular tagging velocimetry (μMTV) setup has been developed to analyze velocity fields in confined internal gas flows. MTV is a little-intrusive velocimetry technique. It relies on the properties of molecular tracers which can experience relatively long lifetime luminescence once excited by a laser beam with an appropriate wavelength. The technique has been validated for acetone seeded flows of argon inside a 1 mm depth rectangular minichannel, with a multilayer design offering two optical accesses. Velocity profiles have been obtained using a specific data reduction process, with a resolution in the order of 15 μm. The experimental data are compared to theoretical velocity profiles of compressible pressure-driven flows. A good agreement is observed, except close to the walls, where the accuracy would still need to be improved. Following these first results obtained at atmospheric pressure, the influence of pressure on the luminescence intensity of acetone molecules is analyzed. The obtained data lead to a discussion of MTV applicability to rarefied flows and its possible use for a direct measurement of velocity slip at the channel walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal A (2011) A comprehensive review on gas flow in microchannels. Int J Micro-Nano Scale Transp 2:1–40

    Article  Google Scholar 

  • Charogiannis A, Beyrau F (2013) Laser induced phosphorescence imaging for the investigation of evaporating liquid flows. Exp Fluids 54(5):1–15. doi:10.1007/s00348-013-1518-2

    Article  Google Scholar 

  • Colin S (2005) Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1(3):268–279. doi:10.1007/s10404-004-0002-y

    Article  Google Scholar 

  • Colin S (2012) Gas microflows in the slip flow regime: a critical review on convective heat transfer. J Heat Transf ASME 134(2):020908. doi:10.1115/1.4005063

    Article  Google Scholar 

  • Colin S, Lalonde P, Caen R (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transf Eng 25(3):23–30. doi:10.1080/01457630490280047

    Article  Google Scholar 

  • Elsnab JR, Maynes D, Klewicki JC, Ameel TA (2010) Mean flow structure in high aspect ratio microchannel flows. Exp Therm Fluid Sci 34(8):1077–1088

    Article  Google Scholar 

  • Ewart T, Perrier P, Graur IA, Méolans JG (2007) Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech 584:337–356

    Article  MATH  Google Scholar 

  • Garbe CS, Roetmann K, Beushausen V, Jähne B (2008) An optical flow MTV based technique for measuring microfluidic flow in the presence of diffusion and Taylor dispersion. Exp Fluids 44:439–450

    Article  Google Scholar 

  • Gendrich CP, Koochesfahani MM, Nocera DG (1997) Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp Fluids 23:361–372

    Article  Google Scholar 

  • Graur I, Perrier P, Ghozlani W, Meolans J (2009) Measurements of tangential momentum accommodation coefficient for various gases in plane microchannel. Phys Fluids 21(10):102004. doi:10.1063/1.3253696

    Article  Google Scholar 

  • Hill RB, Klewicki JC (1996) Data reduction methods for flow tagging velocity measurements. Exp Fluids 20(3):142–152. doi:10.1007/BF00190270

    Article  Google Scholar 

  • Hu H, Koochesfahani MM (2006) Molecular tagging techniques for micro-flow and micro-scale heat transfer studies. In: Proceedings of the FEDSM09. ASME, Vail, pp FEDSM2009–78059

  • Ismailov M, Schock H, Fedewa A (2006) Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry. Exp Fluids 41(1):57–65. doi:10.1007/s00348-006-0150-9

    Article  Google Scholar 

  • Koochesfahani MM (1999) Molecular tagging velocimetry (MTV): progress and applications. In: 30th AIAA fluid dynamics conference. AIAA, Norfolk, pp AIAA99–3786

  • Koochesfahani MM, Nocera DG (2007) Molecular tagging velocimetry. In: Tropea C, Yarin AL, Foss JF (eds) Handbook of experimental fluid dynamics. Springer, Berlin, pp 362–382

  • Lempert WR, Harris SR (2000) Flow tagging velocimetry using caged dye photo-activated fluorophores. Meas Sci Technol 11(9):1251–1258

    Article  Google Scholar 

  • Lempert WR, Ronney P, Magee K, Gee KR, Haugland RP (1995) Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM). Exp Fluids 18(4):249–257. doi:10.1007/bf00195095

    Article  Google Scholar 

  • Lempert WR, Jiang N, Sethuram S, Samimy M (2002) Molecular tagging velocimetry measurements in supersonic microjets. AIAA J 40(6):1065–1070

    Article  Google Scholar 

  • Lempert WR, Boehm M, Jiang N, Gimelshein S, Levin D (2003) Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows. Exp Fluids 34(3):403–411

    Article  Google Scholar 

  • Li S, Day JC, Park JJ, Cadou CP, Ghodssi R (2007) A fast-response microfluidic gas concentrating device for environmental sensing. Sens Actuators A Phys 136(1):69–79

    Article  Google Scholar 

  • Lozano A, Yip B, Hanson RK (1992) Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence. Exp Fluids 13(6):369–376

    Article  Google Scholar 

  • Matsuda Y, Uchida T, Suzuki S, Misaki R, Yamaguchi H, Niimi T (2011) Pressure-sensitive molecular film for investigation of micro gas flows. Microfluid Nanofluid 10(1):165–171

    Article  Google Scholar 

  • Maurer J, Tabeling P, Joseph P, Willaime H (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluids 15(9):2613–2621

    Article  Google Scholar 

  • Maynes D, Webb AR (2002) Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry. Exp Fluids 32(1):3–15

    Article  Google Scholar 

  • Mirzaei M, Dam NJ, van de Water W (2012) Molecular tagging velocimetry in turbulence using biacetyl. Phys Rev E 86(4):046318

    Article  Google Scholar 

  • Morini GL (2000) Analytical determination of the temperature distribution and Nusselt numbers in rectangular ducts with constant axial heat flux. Int J Heat Mass Transf 43(5):741–755

    Article  MATH  Google Scholar 

  • Pharas K, McNamara S (2010) Knudsen pump driven by a thermoelectric material. J Micromech Microeng 20:125032

    Article  Google Scholar 

  • Pitakarnnop J, Varoutis S, Valougeorgis D, Geoffroy S, Baldas L, Colin S (2010) A novel experimental setup for gas microflows. Microfluid Nanofluid 8(1):57–72. doi:10.1007/s10404-009-0447-0

    Article  Google Scholar 

  • Pitz RW, Lahr MD, Douglas ZW, Wehrmeyer JA, Hu S, Carter CD, Hsu K-Y, Lum C, Koochesfahani MM (2005) Hydroxyl tagging velocimetry in a supersonic flow over a cavity. Appl Optics 44(31):6692–6700

    Article  Google Scholar 

  • Samouda F, Barrot C, Colin S, Baldas L, Laurien N (2012a) Analysis of gaseous flows in microchannels by molecular tagging velocimetry. In: Proceedings of the ASME 2012 10th international conference on nanochannels, microchannels and minichannels (ICNMM2012). ASME, Puerto Rico, USA, pp 221–228. doi:10.1115/ICNMM2012-73125

  • Samouda F, Brandner JJ, Barrot C, Colin S (2012b) Velocity field measurements in gas phase internal flows by molecular tagging velocimetry. In: Journal of physics: conference series—proceedings of 1st European conference on gas microflows (GASMEMS2012) 362(1):012026. doi:10.1088/1742-6596/362/1/012026

  • Silva G, Leal N, Semiao V (2008) Micro-PIV and CFD characterization of flows in a microchannel: velocity profiles, surface roughness and Poiseuille numbers. Int J Heat Fluid Flow 29(4):1211–1220

    Article  Google Scholar 

  • Stier B, Koochesfahani MM (1999) Molecular tagging velocimetry (MTV) measurements in gas phase flows. Exp Fluids 26:297–304

    Article  Google Scholar 

  • Sugii Y, Okamoto K (2006) Velocity measurement of gas flow using micro PIV technique in polymer electrolyte fuel cell. In: Proceedings of 4th international conference on nanochannels, microchannels and minichannels (ICNMM2006). ASME, Limerick, pp ICNMM2006–96216

  • Szalmás L, Pitakarnnop J, Geoffroy S, Colin S, Valougeorgis D (2010) Comparative study between computational and experimental results for binary rarefied gas flows through long microchannels. Microfluid Nanofluid 9(6):1103–1114. doi:10.1007/s10404-010-0631-2

    Article  Google Scholar 

  • Thompson BR, Maynes D, Webb BW (2005) Characterization of the hydrodynamically developing flow in a microtube using MTV. J Fluids Eng 127(5):1003–1012

    Article  Google Scholar 

  • Tran TT (2008) Acetone planar laser-induced fluorescence and phosphorescence for mixing studies of multiphase flows at high pressure and temperature. PhD thesis, Georgia Institute of Technology, Atlanta

  • Walsh P, Egan V, Walsh E (2010) Novel micro-PIV study enables a greater understanding of nanoparticle suspension flows: nanofluids. Microfluid Nanofluid 8(6):837–842

    Article  Google Scholar 

  • Wereley ST, Meinhart CD (2005) Chapter 2. Micron-Resolution Particle Image Velocimetry. In: Breuer KS (ed) Microscale Diagnostic Techniques. Springer, Berlin, pp 51–112. doi:10.1007/b137604

  • Wereley ST, Gui L, Meinhart CD (2002) Advanced algorithms for microscale particle image velocimetry. AIAA J 40(6):1047–1055

    Article  Google Scholar 

  • Wu MH, Lin PS (2010) Design, fabrication and characterization of a low-temperature co-fired ceramic gaseous bi-propellant microthruster. J Micromech Microeng 20(8):085026. doi:10.1088/0960-1317/20/8/085026

    Article  Google Scholar 

  • Yamaguchi H, Hanawa T, Yamamoto O, Matsuda Y, Egami Y, Niimi T (2011) Experimental measurement on tangential momentum accommodation coefficient in a single microtube. Microfluid Nanofluid 11(1):57–64. doi:10.1007/s10404-011-0773-x

    Article  Google Scholar 

  • Yoon SY, Ross JW, Mench MM, Sharp KV (2006) Gas-phase particle image velocimetry (PIV) for application to the design of fuel cell reactant flow channels. J Power Sources 160:1017–1025

    Article  Google Scholar 

  • Zhang W-M, Meng G, Wei X (2012) A review on slip models for gas microflows. Microfluid Nanofluid 13(6):845–882. doi:10.1007/s10404-012-1012-9

    Article  Google Scholar 

  • Zhu L, Kroodsma N, Yeom J, Haan J, Shannon M, Meng D (2011) An on-demand microfluidic hydrogen generator with self-regulated gas generation and self-circulated reactant exchange with a rechargeable reservoir. Microfluid Nanofluid 11(5):569–578. doi:10.1007/s10404-011-0822-5

    Article  Google Scholar 

Download references

Acknowledgments

This research obtained financial support from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement no 215504 and from the Fédération de Recherche Fermat, FR 3089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Colin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samouda, F., Colin, S., Barrot, C. et al. Micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems. Microsyst Technol 21, 527–537 (2015). https://doi.org/10.1007/s00542-013-1971-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1971-0

Keywords

Navigation