Skip to main content
Log in

Controlling parameters of focused ion beam (FIB) on high aspect ratio micro holes milling

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Focused ion beam (FIB) direct milling is now recognized as a new method of fabrication, due to high flexibility in milling dimensions, the possible geometries and the material selectivity. This paper discusses the fabrication of micro holes using FIB direct milling in terms of high aspect ratio structures, including FIB parameters and the major effects of FIB milling. It is deduced that sputter yield of material gives a major impact to the depth of milling. Optimization parameters coupled control of FIB direct milling will provide a precise means of fabricating of high aspect ratio micro holes whilst resolving the problem of re-deposition and amorphisation which is common in micro milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adams DP, Vasile MJ, Mayer TM, Hodges VC (2003) Focused ion beam milling of diamond: effects of H2O on yield, surface morphology and microstructure. J Vac Sci Technol B 21(6):2334–2343

    Article  Google Scholar 

  • Ali MY, Hung W, Fu YQ (2010) A review of focused ion beam sputtering. Int J Precis Eng Man 11(1):157–170

    Article  Google Scholar 

  • An R, Li Y, Dou YP, Fang Y, Yang H, Gong QH (2004) Laser micro-hole drilling of soda-lime glass with femtosecond pulses. Chin Phys Lett 21(12):2465–2468

    Article  Google Scholar 

  • Annamalai AS, Ramalingam V (2011) Experimental investigation and computational fluid dynamics analysis of a air cooled condenser heat pipe. Therm Sci 15(3):759–772

    Article  Google Scholar 

  • Atiqah N, Jaafar I, Ali MY, Asfana B (2012) Application of focused ion beam micromachining: a review. Adv Mater Res 576:507–510

    Article  Google Scholar 

  • Bassim ND, De Gregorio BT, Kilcoyne ALD, Scott K, Chou T, Wirick S, Cody G, Stroud RM (2012) Minimizing damage during FIB sample preparation of soft materials. J Microsc 245(3):288–301

    Article  Google Scholar 

  • Benawra J, Donald A, Shannon M (2008) Developing dual beam methods for the study of polymers. J Phys Conf Ser 126:2079

    Article  Google Scholar 

  • Bhavsar SN, Aravindan S, Rao PV (2009) A critical review on microtools fabrication by focused ion beam (FIB) technology. Technology 2009:12–22

    Google Scholar 

  • Bhavsar SN, Aravindan S, Rao PV (2012) Machinability study of cemented carbide using focused ion beam (FIB) milling. Mater Manuf Process 27(10):1029–1034

    Article  Google Scholar 

  • Bushby AJ, P’ng KM, Young RD, Pinali C, Knupp C, Quantock AJ (2011) Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat Protoc 6(6):845–858

    Article  Google Scholar 

  • Causa F, Milani M, Sarma J, Tatti F, Ferraro L (2006) Improvement of SLD efficiency by focussed ion beam post-fabrication processing. In: Society of photo-optical instrumentation engineers (SPIE) conference series, p 10

  • Chantngarm P (2008) Characterization of structures maskless-etched by low-energy FIB. In: 2008 IEEE Asia Pacific conference on circuits and systems (APCCAS 2008), vol 1–4, pp 1716–1719

  • Chen ST, Luo TS (2011) Development of a high-precision, wear-resistant micro-holes structure. J Mater Process Tech 211(2):285–293

    Article  Google Scholar 

  • Cheung CL, Nikolić R, Reinhardt C, Wang T (2006) Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17(5):1339

    Article  Google Scholar 

  • Chini T, Sanyal M, Bhattacharyya S (2002) Energy-dependent wavelength of the ion-induced nanoscale ripple. Phys Rev B 66:153404

    Article  Google Scholar 

  • Chuang WH, Fettig RK, Ghodssi R (2007) Nano-scale fatigue study of LPCVD silicon nitride thin films using a mechanical-amplifier actuator. J Micromech Microeng 17(5):938

    Article  Google Scholar 

  • Dasgupta A, Barker D, Pecht M (1990) Reliability prediction of electronic packages. In: IEEE annual proceedings of the reliability and maintainability symposium, pp 323–330

  • Davies S, Khamsehpour B (1996) Focused ion beam machining and deposition for nanofabrication. Vacuum 47(5):455–462

    Article  Google Scholar 

  • Drobne D, Milani M, Zrimec A, Leser V, Berden Zrimec M (2005) Electron and ion imaging of gland cells using the FIB/SEM system. J Microsc (Oxford) 219:29–35

    Article  MathSciNet  Google Scholar 

  • Drobne D, Milani M, Leser V, Tatti F, Zrimec A, Znidarsic N, Kostanjsek R, Strus J (2008) Imaging of intracellular spherical lamellar structures and tissue gross morphology by a focused ion beam/scanning electron microscope (FIB/SEM). Ultramicroscopy 108(7):663–670

    Article  Google Scholar 

  • Einsle JF, Bouillard JS, Dickson W, Zayats AV (2011) Hybrid FIB milling strategy for the fabrication of plasmonic nanostructures on semiconductor substrates. Nanoscale Res Lett 6:1–5

    Article  Google Scholar 

  • Fakhoury JR, Sisson JC, Zhang XJ (2009) Microsystems for controlled genetic perturbation of live Drosophila embryos: RNA interference, development robustness and drug screening. Microfluid Nanofluid 6(3):299–313

    Article  Google Scholar 

  • Fang FZ, Xu ZW, Hu XT, Wang CT, Luo XG, Fu YQ (2010) Nano-photomask fabrication using focused ion beam direct writing. CIRP Ann Manuf Technol 59(1):543–546

    Article  Google Scholar 

  • Feng C, Zhao YP, Liu DQ (2007) Squeeze-film effects in MENTS devices with perforated plates for small amplitude vibration. Microsyst Technol 13(7):625–633

    Article  Google Scholar 

  • Forbest RG (1997) Understanding how the liquid-metal ion source works. Vacuum 48(1):85–97

    Article  Google Scholar 

  • Freeman D, Madden S, Luther-Davies B (2005) Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam. Opt Express 13(8):3079–3086

    Article  Google Scholar 

  • Frey L, Lehrer C, Ryssel H (2003) Nanoscale effects in focused ion beam processing. Appl Phys A Mater 76(7):1017–1023

    Article  Google Scholar 

  • Fu YQ, Bryan NKA (2005). Investigation of aspect ratio of hole drilling from micro to nanoscale via focused ion beam fine milling. In: Innovation in manufacturing systems and technology (IMST), vol 01

  • Fu YQ, Ngoi BKA (2001) Investigation of diffractive–refractive microlens array fabricated by focused ion beam technology. Opt Eng 40(4):511–516

    Article  Google Scholar 

  • Fu YQ, Bryan NKA, Shing ON, Hung NP (2000) Influence of the redeposition effect for focused ion beam 3D micromachining in silicon. Int J Adv Manuf Tech 16(12):877–880

    Article  Google Scholar 

  • Gao Y, Chen TN, Wang XP (2011) Numerical modeling of a novel degradable drug delivery system with microholes. Microsyst Technol 17(3):387–394

    Article  Google Scholar 

  • Gierak J (2009) Focused ion beam technology and ultimate applications. Semicond Sci Technol 24(4):043001

    Article  Google Scholar 

  • Glass GA, Dias JF, Dymnikov AD, Rout B (2008) 900 keV gold ion sputter etching of silicon and metals. Nucl Instrum Methods Phys Res Sect B 266(14):3330–3331

    Article  Google Scholar 

  • Haythornthwaite R, Nxumalo J, Phaneuf MW (2004) Use of the focused ion beam to locate failure sites within electrically erasable read only memory microcircuits. J Vac Sci Technol A 22(3):902–907

    Article  Google Scholar 

  • Hoffmann P, Van den Bergh H, Flicstein J, Assayag GB, Gierak J, Bresse JF (1991) Direct writing of iridium lines with a focused ion beam. J Vac Sci Technol B Microelectron Nanom Struct 9(6):3483–3486

    Article  Google Scholar 

  • Homentcovschi D, Miles RN (2005) Viscous damping of perforated planar micromechanical structures. Sens Actuator A Phys 119(2):544–552

    Article  Google Scholar 

  • Jacques G, Ralf J, Peter H (2012) Nanofabrication with focused ion beams. In: Nanofabrication handbook. CRC Press, pp 41–84

  • Ji L (2007) Plasma ion sources and ion beam technology in microfabrications. ProQuest, USA

    Google Scholar 

  • Kandlikar SG, Hayner CN (2009) Liquid cooled cold plates for industrial high-power electronic devices thermal design and manufacturing considerations. Heat Transf Eng 30(12):918–930

    Article  Google Scholar 

  • Karrea PSK, Bergstrom PL, Mallick G, Karna SP (2007) Room temperature operational single electron transistor fabricated by focused ion beam deposition. J Appl Phys 102(2):024316

    Article  Google Scholar 

  • Kim HB, Hobler G, Lugstein A, Bertagnolli E (2007) Simulation of ion beam induced micro/nano fabrication. J Micromech Microeng 17(6):1178–1183

    Article  Google Scholar 

  • Kim JH, Boo JH, Kim YJ (2008) Effect of stage control parameters on the FIB milling process. Thin Solid Films 516(19):6710–6714

    Article  Google Scholar 

  • Kim C-S, Ahn S-H, Jang D-Y (2012) Review: developments in micro/nanoscale fabrication by focused ion beams. Vacuum 86(8):1014–1035

    Article  Google Scholar 

  • Krueger R (1999) Dual-column (FIB–SEM) wafer applications. Micron 30(3):221–226

    Article  Google Scholar 

  • Langford RM, Petford-Long AK (2001) Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J Vac Sci Technol A Vac Surf Films 19(5):2186–2193

    Article  Google Scholar 

  • Langford RM, Nellen PM, Gierak J, Fu Y (2007) Focused ion beam micro-and nanoengineering. MRS Bull 32(5):417–423

    Article  Google Scholar 

  • Latif A (2000) Nanofabrication using focused ion beam. University of Cambridge, Cambridge

    Google Scholar 

  • Lee SH, Kang HW, Cho DW, Moon W (2007) Study on the method for the reliability test of focused ion beam. Microsyst Technol 13(5–6):569–577

    Article  Google Scholar 

  • Li YJ, Xie HM, Guo BQ, Luo Q, Gu CZ, Xu MQ (2010) Fabrication of high-frequency moire gratings for microscopic deformation measurement using focused ion beam milling. J Micromech Microeng 20(5):055037

    Article  Google Scholar 

  • Lim HS, Wong YS, Rahman M, Lee MKE (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. J Mater Process Tech 140:318–325

    Article  Google Scholar 

  • Lim YC, Kouzani AZ, Duan W (2010) Lab-on-a-chip: a component view. Microsyst Technol 16(12):1995–2015

    Article  Google Scholar 

  • Lindquist NC, Nagpal P, McPeak KM, Norris DJ, Oh S-H (2012) Engineering metallic nanostructures for plasmonics and nanophotonics. Rep Prog Phys 75(3):036501

    Article  Google Scholar 

  • Liu C, Xia Z, Czernuszka J (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7):1051–1064

    Article  Google Scholar 

  • Lombardo JJ, Ristau RA, Harris WM, Chiu WKS (2012) Focused ion beam preparation of samples for X-ray nanotomography. J Synchrotron Radiat 19:789–796

    Article  Google Scholar 

  • Lugstein A, Basnar B, Smoliner J, Bertagnolli E (2003) FIB processing of silicon in the nanoscale regime. Appl Phys A Mater 76(4):545–548

    Article  Google Scholar 

  • Lugstein A, Basnar B, Bertagnolli E (2004) Size and site controlled Ga nanodots on GaAs seeded by focused ion beams. J Vac Sci Technol B 22(3):888–892

    Article  Google Scholar 

  • Lugstein A, Steiger-Thirsfeld A, Basnar B, Hyun YJ, Pongratz P, Bertagnolli E (2009) Impact of fluence-rate related effects on the sputtering of silicon at elevated target temperatures. J Appl Phys 105(4):044912

    Article  Google Scholar 

  • Maas D, van Veldhoven E, Chen P, Sidorkin V, Salemink H, van der Drift E, Alkemade P (2010) Nanofabrication with a helium ion microscope. In: Proceeding of the SPIE, p 763814

  • Malek CK, Hartley FT, Neogi J (2003) Fast prototyping of high-aspect ratio, high-resolution X-ray masks by gas-assisted focused ion beam. Microsyst Technol 9(6–7):409–412

    Article  Google Scholar 

  • Matsui S, Ochiai Y (1996) Topical review: focused ion beam applications to solid state devices. Nanotechnology 7:247–258

    Article  Google Scholar 

  • Melngailis J (1987) Focused ion-beam technology and applications. J Vac Sci Technol B 5(2):469–495

    Article  Google Scholar 

  • Munroe PR (2009) The application of focused ion beam microscopy in the material sciences. Mater Charact 60(1):2–13

    Article  Google Scholar 

  • Nellen PM, Bronnimann R (2006) Milling micro-structures using focused ion beams and its application to photonic components. Meas Sci Technol 17(5):943–948

    Article  Google Scholar 

  • Nellen PM, Callegari V, Hofmann J, Platzgummer E, Klein C (2006) FIB precise prototyping and simulation. In: MRS online proceedings library, vol 960

  • Nenadović T, Perraillon B, Bogdanov Ž, Djordjević Z, Milić M (1990) Sputtering and surface topography of oxides. Nucl Instrum Methods Phys Res Sect B 48(1):538–543

    Article  Google Scholar 

  • Orloff J (1993) High-resolution focused ion-beams. Rev Sci Instrum 64(5):1105–1130

    Article  Google Scholar 

  • Patterson N, Adams DP, Hodges VC, Vasile MJ, Michael JR, Kotula PG (2008) Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection. Nanotechnology 19(23):235304

    Article  Google Scholar 

  • Prenitzer B, Urbanik-Shannon C, Giannuzzi L, Brown S, Irwin R, Shofner T, Stevie F (2003) The correlation between ion beam/material interactions and practical FIB specimen preparation. Microsc Microanal 9(03):216–236

    Article  Google Scholar 

  • Raffa V, Castrataro P, Menciassi A, Dario P (2006a) Focused ion beam as a scanning probe: methods and applications. In: Bhushan B, Fuchs H (eds) Applied scanning probe methods II. Springer, Berlin/Heidelberg, pp 361–412

    Chapter  Google Scholar 

  • Raffa V, Pensabene V, Menciassi A, Dario P (2006b) A methodology for high precision fabrication, modification and characterization of neural interfaces. In: 2006 1st IEEE RAS-EMBS International conference on biomedical robotics and biomechatronics, vol 1–3, pp 692–697

  • Rajsiri S, Kempshall B, Schwarz S, Giannuzzi L (2002) FIB damage in silicon: amorphization or redeposition? Microsc Microanal 8(02):50–51

    Google Scholar 

  • Reyntjens S, Puers R (2000) Focused ion beam induced deposition: fabrication of three-dimensional microstructures and Young’s modulus of the deposited material. J Micromech Microeng 10(2):181–188

    Article  Google Scholar 

  • Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11(4):287–300

    Article  Google Scholar 

  • Salic A, Tusek A, Zelic B (2012) Application of microreactors in medicine and biomedicine. J Appl Biomed 10(3):137–153

    Article  Google Scholar 

  • Sen MH, Shan HS (2005) A review of electrochemical macro- to micro-hole drilling processes. Int J Mach Tool Manuf 45(2):137–152

    Article  Google Scholar 

  • Shen SC, Pan CT, Wang YR, Chang CC (2006) Fabrication of integrated nozzle plates for inkjet print head using microinjection process. Sens Actuator A Phys 127(2):241–247

    Article  Google Scholar 

  • Smentkowski VS (2000) Trends in sputtering. Prog Surf Sci 64(1–2):1–58

    Article  Google Scholar 

  • Soden JM, Anderson RE (1993) IC failure analysis: techniques and tools for quality reliability improvement. Proc IEEE 81(5):703–715

    Article  Google Scholar 

  • Stevie F, Griffis D and Russell P (2005) Focused ion beam gases for deposition and enhanced etch. In: Introduction to focused ion beams, pp 53–72

  • Stroud RM (2005) Clues to stellar evolution from microscopy of star dust. NRL Review, Material Science and Technology Division. In: DTIC document

  • Tan B (2006) Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses. J Micromech Microeng 16(1):109–112

    Article  Google Scholar 

  • Tixier A, Griscom L, Cozic K, Nagai H, Le Pioufle B, Murakami Y, Tamiya E, Fujita H (2000) Catching and attaching cells using an array of microholes. In: Microtechnologies in medicine and biology, 1st annual international, conference on 2000, pp 36–40

  • Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14(4):R15–R34

    Article  Google Scholar 

  • Tseng AA, Insua IA, Park JS, Li B, Vakanas GP (2004) Milling of submicron channels on gold layer using double charged arsenic ion beam. J Vac Sci Technol B 22(1):82–89

    Article  Google Scholar 

  • Tseng AA, Insua IA, Park JS, Chen CD (2005) Milling yield estimation in focused ion beam milling of two-layer substrates. J Micromech Microeng 15(1):20–28

    Article  Google Scholar 

  • Urbánek M, Šikola T (2012) Focused ion beam fabrication of metallic nanostructures. In: Vistas in nanofabrication, vol 207

  • Urbanek M, Uhlir V, Babor P, Kolibalova E, Hrncir T, Spousta J, Sikola T (2010) Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process. Nanotechnology 21(14):145304

    Article  Google Scholar 

  • Utke I, Hoffmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol B 26(4):1197–1276

    Article  Google Scholar 

  • Veloso JFCA, Amaro F, dos Santos JMF, Mir JA, Derbyshire GE, Stephenson R, Rhodes NJ, Schooneveld EM (2004) Application of the microhole and strip plate detector for neutron detection. IEEE T Nucl Sci 51(5):2104–2109

    Article  Google Scholar 

  • Wang G, Liu J, Zheng Z, Xiao J, Zhang J (2011) A fast  response suspended core fiber optical gas sensor with side-opening and micro-holes configurations. In: Proceedings of the SPIE, vol 7753, p 77537T

  • Wu BQ, Kumar A, Pamarthy S (2010) High aspect ratio silicon etch: a review. J Appl Phys 108(5):051101

    Article  Google Scholar 

  • Xu ZW, Fang FZ, Gao HF, Zhu YB, Wu W, Weckenmann A (2012) Nano fabrication of star structure for precision metrology developed by focused ion beam direct writing. CIRP Ann Manuf Technol 61(1):511–514

    Article  Google Scholar 

  • Yahiaoui R, Zeggari R, Malapert J, Manceau JF (2012) A MEMS-based pneumatic micro-conveyor for planar micromanipulation. Mechatronics 22(5):515–521

    Article  Google Scholar 

  • Yao N (2005) Focused ion beam system—a multifunctional tool for nanotechnology. In: Handbook of Microscopy for Nanotechnology, pp 247–286

  • Youn SW, Takahashi M, Goto H, Maeda R (2006) Microstructuring of glassy carbon mold for glass embossing—comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining. Microelectron Eng 83(11–12):2482–2492

    Article  Google Scholar 

  • Youn SW, Okuyama C, Takahashi M, Maeda R (2008) A study on fabrication of silicon mold for polymer hot-embossing using focused ion beam milling. J Mater Process Techol 201(1–3):548–553

    Article  Google Scholar 

  • Yu ZY, Zhang Y, Li J, Luan J, Zhao F, Guo D (2009) High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM. CIRP Ann Manuf Technol 58(1):213–216

    Article  Google Scholar 

  • Zhang S, Fang F, Hu X (2007) Advances of focused ion beam in micromachining technology. In: Proceedings of SPIE, International Society for Optical Engineering, vol 6724, p 67240E

  • Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56(2):145–172

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the financial support provided by the Institute of Research Management and Consultancy, University of Malaya (UM) under the IPPP Fund Project No. PV060/2012A and High Impact Research Grant, Project No. UM.G/KB4/6/1(H-16001-00-D000029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatin Syazana Jamaludin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamaludin, F.S., Mohd Sabri, M.F. & Said, S.M. Controlling parameters of focused ion beam (FIB) on high aspect ratio micro holes milling. Microsyst Technol 19, 1873–1888 (2013). https://doi.org/10.1007/s00542-013-1912-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1912-y

Keywords

Navigation