Skip to main content
Log in

Analysis of an in-plane micro-generator with various microcoil shapes

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This study presents an analysis of an in-plane micro-generator with various microcoil shapes and multiple aspects of coupling, and reports the fabrication of a prototype micro-generator. It is important to establish analytical solutions for the micro-generator to predict the induced voltage. These analytical solutions can be used to estimate the micro-generator power to reduce the experimental time and the cost. Understanding the physical meanings of the variables can optimize the structure of the micro-electromagnetic generator. This model considers electromagnetism, kinematics, and geometry. The proposed in-plane rotary electromagnetic micro-generator was fabricated using low-temperature co-fired ceramic technology to co-fire the silver microcoils on the ceramic substrate with different shaped coils (e.g., square-shaped, circle-shaped and sector-shaped) both with the printing linewidth and 100 μm spacing of these microcoils. A planar permanent magnet with an outer diameter of 9 mm and a thickness of 700 μm was sintered by Nd/Fe/B. Its residual induction is 1.4 T. The experimental data in this study can be compared with analytical solutions. Analytical results show that the micro-generator with a sector-shaped microcoil generates a maximum effective value of 218.127 mV induced voltage at 1395.34 rad/s. Experimental measurements show a close agreement with these analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43:3940–3951

    Article  Google Scholar 

  • Arnold DP, Joung YH, Zana I, Park JW, Das S, Lang JH, Veazie D, Allen MG (2005) High-speed characterization and mechanical modeling of microscale, axial-flux, permanent-magnet generators. The 13th International Conference on Solid-Static Sensors. Actuators Microsyst 1:701–704

    Google Scholar 

  • Beeby SP, Torah RN, Tudor MJ, Glynne-Jones P, O’Donnell T, Saha CR, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17:1257–1265

    Article  Google Scholar 

  • Bernardes AM, Espinosa DCR, Tenório JAS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sources 130:291–298

    Article  Google Scholar 

  • Das S, Arnold DP, Zana I, Park JW, Allen MG, Lang JH (2006) Microfabricated high-speed axial-flux multiwatt permanent-magnet generators-part I: modeling. J Microelectromech Syst 15:1330–1350

    Article  Google Scholar 

  • Espinosa DCR, Bernardes AM, Tenório JAS (2004) An overview on the current processes for the recycling of batteries. J Power Sources 135:311–319

    Article  Google Scholar 

  • Fang HB, Liu JQ, Xu ZY, Donga L, Wang L, Chen D, Cai BC, Liu Y (2005) A MEMS-based piezoelectric power generator for low frequency vibration energy harvesting. Chin Phys Lett 23:732–734

    Google Scholar 

  • Fang HB, Liu JQ, Xu ZY, Donga L, Wang L, Chen D, Cai BC, Liu Y (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:1280–1284

    Article  Google Scholar 

  • Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Article  Google Scholar 

  • Gould CA, Shammas NYA, Grainger S, Taylor I (2008) Thermoelectric technology: micro-electrical and power generation properties. In: Proceedings of the 26th International Conference on Microelectronics, pp 329–332

  • Hande A, Stuart TA (2004) A selective equalizer for NiMH batteries. J Power Sources 138:327–339

    Article  Google Scholar 

  • Herrault F, Ji CH, Shafer RH, Kim SH, Allen MG (2007) Ultraminiaturized milliwatt-scale permanent magnet generators. In: The 14th International Conference on Solid-State Sensors, Actuators Microsyst, pp 899–902

  • Holmes AS, Hong G, Pullen KR (2005) Axial-flux permanent magnet machines for micropower generation. J Microelectromech Syst 14:54–63

    Article  Google Scholar 

  • Kulkarni S, Roy S, O’Donnell T, Beeby S, Tudor J (2006) Vibration based electromagnetic micropower generator on silicon. J Appl Phys 99:P511-1–P511-3

    Google Scholar 

  • Kulkarni S, Koukharenko E, Torah R, Tudor J, Beeby S, O’Donnell T, Roy S (2008) Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sens Actuators A 145–146:336–342

    Google Scholar 

  • Lin GJ, Chen M, Song DC (2009) Research of micro-power generator based on the dielectric electro active polymer. Int Conf Energy Environ Technol 1:782–786

    Article  Google Scholar 

  • Mateu L, Villavieja C, Mol F (2007) Physics-based time-domain model of a magnetic induction microgenerator. IEEE Trans Magn 43:992–1001

    Article  Google Scholar 

  • Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion. IEEE Trans Very Large Scale Integr VLSI Syst 9(1):64–76

    Article  Google Scholar 

  • Mitcheson PD, Reilly EK, Toh T, Wright PK, Yeatman EM (2007) Performance limits of the three MEMS inertial energy generator transduction types. J Micromech Microeng 17:S211–S216

    Article  Google Scholar 

  • Pan CT, Chen YJ (2008) Application of low temperature co-fire ceramics on in-plane micro-generator. Sens Actuators A Phys 144:144–153

    Article  Google Scholar 

  • Raisigel H, Cugat O, Delamare J (2005) Magnetic planar micro generator. The 13th International Conference on solid-state sensors. Actuators Microsyst 1:757–761

    Google Scholar 

  • Roundy S, Wright PK, Pister KS (2002) Micro electrostatic vibration to electricity converters. In: ASME International Mechanical Engineering Congress and Congress and Exposition, pp 1–10

  • Roundy S, Steingart D, Frechette L, Wright P, Rabaey J (2004) Power sources for wireless sensor networks. Wireless sensor networks 2920:1–17

    Article  Google Scholar 

  • Rowe DM, Morgan DV, Kiely JH (1991) Low cost miniature thermoelectric generator. Electron Lett 27:2332–2334

    Article  Google Scholar 

  • Sari I, Balkan T, Kulah H (2008) A micro power generator with planar coils on parylene cantilevers. In: Proceedings of PRIME: 2008 PhD Research in Microelectronics and Electronics, pp 133–136

  • Sari I, Balkan T, Kulah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique. J Microelectromech Syst 19:14–27

    Article  Google Scholar 

  • Serre C, Perez-Rodrıguez A, Fondevilla N, Morante JR, Montserrat J, Esteve J (2007) Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators. Microsyst Technol 13:1655–1661

    Article  Google Scholar 

  • Serre C, Perez-Rodrıguez A, Fondevilla N, Martincic E, Martınez S, Morante JR, Montserrat J, Esteve J (2008) Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators. Microsyst Technol 14:653–658

    Article  Google Scholar 

  • Swallow LM, Luo JK, Siores E, Patel I, Dodds D (2008) A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater Struct 17:1–7

    Article  Google Scholar 

  • Tashiro R, Katayama N, Ishizuka Y, Tsuboi F, Tsuchiya K (2000) Development of an electrostatic generator that harnasses the motion of a living body. JSME Int J Ser C 43(4):916–922

    Article  Google Scholar 

  • Wang PH, Dai XH, Fang DM, Zhao XL (2007) Design, fabrication and performance of a new vibration-based electromagnetic micro power generator. Microelectron J 38:1175–1180

    Article  Google Scholar 

  • Yang S, Knickle H (2002) Design and analysis of aluminum/air battery system for electric vehicles. J Power Sources 112:162–173

    Article  Google Scholar 

  • Zhu D, Roberts S, Tudor MJ, Beeby SP (2010) Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sens Actuators A 158:284–293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y.J., Pan, C.T. & Liu, Z.H. Analysis of an in-plane micro-generator with various microcoil shapes. Microsyst Technol 19, 43–52 (2013). https://doi.org/10.1007/s00542-012-1635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1635-5

Keywords

Navigation