Skip to main content

Advertisement

Log in

Comparison of the effect of sevoflurane and propofol on the optic nerve sheath diameter in patients undergoing middle ear surgery

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 27 October 2023

Abstract

Purpose

During middle ear surgery, the patient’s head is turned away from the surgical site, which may increase the intracranial pressure. Anesthetics also affect the intracranial pressure. The optic nerve sheath diameter (ONSD) measured using ultrasonography is a reliable marker for estimating the intracranial pressure. This aim of this study was to investigate the effect of sevoflurane and propofol on the ONSD in patients undergoing middle ear surgery.

Methods

Fifty-eight adult patients were randomized into sevoflurane group (n = 29) or propofol group (n = 29). The ONSD was measured using ultrasound after anesthesia induction before head rotation (T0), and at the end of surgery (T1). The occurrence and severity of postoperative nausea and vomiting (PONV) were assessed 1 h after the surgery.

Results

The ONSD was significantly increased from T0 to T1 in the sevoflurane group [4.3 (0.5) mm vs. 4.9 (0.6) mm, respectively; P < 0.001] and the propofol group [4.2 (0.3) mm vs. 4.8 (0.5) mm, respectively; P < 0.001]. No significant difference was observed in the ONSD at T0 (P = 0.267) and T1 (P = 0.384) between the two groups. The change in the ONSD from T0 to T1 was not significantly different between the sevoflurane and propofol groups [0.6 (0.4) mm vs. 0.6 (0.3) mm, respectively; P = 0.972]. The occurrence and severity of PONV was not significantly different between the sevoflurane and propofol groups (18% vs. 0%, respectively; P = 0.053).

Conclusion

The ONSD was significantly increased during middle ear surgery. No significant difference was observed in the amount of ONSD increase between the sevoflurane and propofol groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luers JC, Hüttenbrink KB. Surgical anatomy and pathology of the middle ear. J Anat. 2016;228:338–53.

    Article  PubMed  Google Scholar 

  2. Burbridge MA, Min JG, Jaffe RA. Effect of head rotation on jugular vein patency under general anesthesia. Can J Neurol Sci. 2019;46:355–7.

    Article  PubMed  Google Scholar 

  3. Dunn LT. Raised intracranial pressure. J Neurol Neurosurg Psychiatry. 2002;73:i23–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chou SY, Digre KB. Neuro-ophthalmic complications of raised intracranial pressure, hydrocephalus, and shunt malfunction. Neurosurg Clin N Am. 1999;10:587–608.

    Article  CAS  PubMed  Google Scholar 

  5. Matta Basil F, Heath Karen J, Tipping K, Summors AC. Direct Cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology. 1999;91:677–80.

    Article  Google Scholar 

  6. Scheller MS, Tateishi A, Drummond JC, Zornow MH. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology. 1988;68:548–51.

    Article  CAS  PubMed  Google Scholar 

  7. Kaisti Kaike K, Långsjö Jaakko W, Aalto S, Oikonen V, Sipilä H, Teräs M, Hinkka S, Metsähonkala L, Scheinin H. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99:603–13.

    Article  CAS  PubMed  Google Scholar 

  8. Artru AA, Lam AM, Johnson JO, Sperry RJ. Intracranial pressure, middle cerebral artery flow velocity, and plasma inorganic fluoride concentrations in neurosurgical patients receiving sevoflurane or isoflurane. Anesth Analg. 1997;85:587–92.

    Article  CAS  PubMed  Google Scholar 

  9. Pinaud M, Lelausque JN, Chetanneau A, Fauchoux N, Ménégalli D, Souron R. Effects of propofol on cerebral hemodynamics and metabolism in patients with brain trauma. Anesthesiology. 1990;73:404–9.

    Article  CAS  PubMed  Google Scholar 

  10. Petersen KD, Landsfeldt U, Cold GE, Pedersen CB, Mau S, Hauerberg J, Holst P. ICP is lower during propofol anaesthesia compared to isoflurane and sevoflurane. Acta Neurochir Suppl. 2002;81:89–91.

    CAS  PubMed  Google Scholar 

  11. Honkavaara P, Saarnivaara L, Klemola UM. Prevention of nausea and vomiting with transdermal hyoscine in adults after middle ear surgery during general anaesthesia. Br J Anaesth. 1994;73:763–6.

    Article  CAS  PubMed  Google Scholar 

  12. Reinhart DJ, Klein KW, Schroff E. Transdermal scopolamine for the reduction of postoperative nausea in outpatient ear surgery: a double-blind, randomized study. Anesth Analg. 1994;79:281–4.

    Article  CAS  PubMed  Google Scholar 

  13. Watcha MF, White PF. Postoperative nausea and vomiting. Its etiology, treatment, and prevention. Anesthesiology. 1992;77:162–84.

    Article  CAS  PubMed  Google Scholar 

  14. Ishizaki H, Pyykkö I, Aalto H, Starck J. Tullio phenomenon and postural stability: experimental study in normal subjects and patients with vertigo. Ann Otol Rhinol Laryngol. 1991;100:976–83.

    Article  CAS  PubMed  Google Scholar 

  15. Andrews P. Physiology of nausea and vomiting. Br J Anaesth. 1992;69:2S-19S.

    Article  CAS  PubMed  Google Scholar 

  16. Chen L-m, Wang L-j, Hu Y, Jiang X-h, Wang Y-z, Xing Y-q. Ultrasonic measurement of optic nerve sheath diameter: a non-invasive surrogate approach for dynamic, real-time evaluation of intracranial pressure. Br J Ophthalmol. 2019;103:437–41.

    Article  PubMed  Google Scholar 

  17. Bäuerle J, Schuchardt F, Schroeder L, Egger K, Weigel M, Harloff A. Reproducibility and accuracy of optic nerve sheath diameter assessment using ultrasound compared to magnetic resonance imaging. BMC Neurol. 2013;13:187.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sahu S, Panda N, Swain A, Mathew P, Singla N, Gupta S, Jangra K, Bhardwaj A, Bhagat H. Optic nerve sheath diameter: correlation with intra-ventricular intracranial measurements in predicting dysfunctional intracranial compliance. Cureus. 2021;13: e13008.

    PubMed  PubMed Central  Google Scholar 

  19. Geeraerts T, Merceron S, Benhamou D, Vigué B, Duranteau J. Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med. 2008;34:2062–7.

    Article  PubMed  Google Scholar 

  20. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88:1170–8.

    Article  CAS  PubMed  Google Scholar 

  21. Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, Billard V, Hoke JF, Moore KH, Hermann DJ, Muir KT, Mandema JW, Shafer SL. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86:10–23.

    Article  CAS  PubMed  Google Scholar 

  22. Agrawal A, Cheng R, Tang J, Madhok DY. Comparison of two techniques to measure optic nerve sheath diameter in patients at risk for increased intracranial pressure. Crit Care Med. 2019;47:e495–501.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fowlkes JB, Holland CK. Mechanical bioeffects from diagnostic ultrasound: AIUM consensus statements. American Institute of Ultrasound in Medicine. J Ultrasound Med. 2000;19:69–72.

    Article  CAS  PubMed  Google Scholar 

  24. Hansen HC, Lagrèze W, Krueger O, Helmke K. Dependence of the optic nerve sheath diameter on acutely applied subarachnoidal pressure - an experimental ultrasound study. Acta Ophthalmol. 2011;89:e528–32.

    Article  PubMed  Google Scholar 

  25. Albeck MJ, Børgesen SE, Gjerris F, Schmidt JF, Sørensen PS. Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg. 1991;74:597–600.

    Article  CAS  PubMed  Google Scholar 

  26. Grover VK, Bala I, Bandi SS, Mahajan R, Khosla VK. Changes in intracranial pressure in various positions of the head in anaesthetised patients. Bahrain Med Bull. 2003;25:1–6.

    Google Scholar 

  27. Mavrocordatos P, Bissonnette B, Ravussin P. Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol. 2000;12:10–4.

    Article  CAS  PubMed  Google Scholar 

  28. Toole JF, Tucker SH. Influence of head position upon cerebral circulation. Studies on blood flow in cadavers. Arch Neurol. 1960;2:616–23.

    Article  CAS  PubMed  Google Scholar 

  29. Lee YY, Lee H, Park HS, Kim WJ, Baik HJ, Kim DY. Optic nerve sheath diameter changes during gynecologic surgery in the Trendelenburg position: comparison of propofol-based total intravenous anesthesia and sevoflurane anesthesia. Anesth Pain Med (Seoul). 2019;14:393–400.

    Article  PubMed  Google Scholar 

  30. Choi ES, Jeon YT, Sohn HM, Kim DW, Choi SJ, In CB. Comparison of the effects of desflurane and total intravenous anesthesia on the optic nerve sheath diameter in robot assisted laparoscopic radical prostatectomy: a randomized controlled trial. Medicine (Baltimore). 2018;97: e12772.

    Article  CAS  PubMed  Google Scholar 

  31. Kim Y, Choi S, Kang S, Park B. Propofol Affects optic nerve sheath diameter less than sevoflurane during robotic surgery in the steep trendelenburg position. Biomed Res Int. 2019;2019:5617815.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Geng W, Chen C, Sun X, Huang S. Effects of sevoflurane and propofol on the optic nerve sheath diameter in patients undergoing laparoscopic gynecological surgery: a randomized controlled clinical studies. BMC Anesthesiol. 2021;21:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Partington T, Farmery A. Intracranial pressure and cerebral blood flow. Anaesth Intensive Care Med. 2014;15:189–94.

    Article  Google Scholar 

  34. Holmström A, Rosén I, Åkeson J. Desflurane results in higher cerebral blood flow than sevoflurane or isoflurane at hypocapnia in pigs. Acta Anaesthesiol Scand. 2004;48:400–4.

    Article  PubMed  Google Scholar 

  35. Amini A, Eghtesadi R, Feizi AM, Mansouri B, Kariman H, Dolatabadi AA, Hatamabadi H, Kabir A. Sonographic optic nerve sheath diameter as a screening tool for detection of elevated intracranial pressure. Emerg (Tehran). 2013;1:15–9.

    PubMed  Google Scholar 

  36. Jeon JP, Lee SU, Kim SE, Kang SH, Yang JS, Choi HJ, Cho YJ, Ban SP, Byoun HS, Kim YS. Correlation of optic nerve sheath diameter with directly measured intracranial pressure in Korean adults using bedside ultrasonography. PLoS One. 2017;12: e0183170.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care. 2011;15:506–15.

    Article  PubMed  Google Scholar 

  38. Marmarou A, Anderson RL, Ward JD, Choi SC, Young HF, Eisenberg HM, Foulkes MA, Marshall LF, Jane JA. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75:S59–66.

    Article  Google Scholar 

Download references

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Young Hwang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, JE., Kim, H., Won, D. et al. Comparison of the effect of sevoflurane and propofol on the optic nerve sheath diameter in patients undergoing middle ear surgery. J Anesth 37, 880–887 (2023). https://doi.org/10.1007/s00540-023-03248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-023-03248-7

Keywords

Navigation