Skip to main content
Log in

Central noradrenergic activity affects analgesic effect of Neuropeptide S

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Background

Neuropeptide S (NPS) is an endogenous neuropeptide controlling anxiolysis, wakefulness, and analgesia. NPS containing neurons exist near to the locus coeruleus (LC) involved in the descending anti-nociceptive system. NPS interacts with central noradrenergic neurons; thus brain noradrenergic signaling may be involved in NPS-induced analgesia. We tested NPS analgesia in noradrenergic neuron-lesioned rats using a selective LC noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4).

Methods

A total 66 male Sprague–Dawley rats weighing 350–450 g were used. Analgesic effects of NPS were evaluated using hot-plate and tail-flick test with or without DSP-4. The animal allocated into 3 groups; hot-plate with NPS alone intracerebroventricular (icv) (0.0, 1.0, 3.3, and 10.0 nmol), tail-flick NPS alone icv (0.0 and 10.0 nmol), and hot-plate with NPS and DSP-4 (0 or 50 mg/kg ip). In hot-plate with NPS and DSP-4 group, noradrenaline content in the cerebral cortex, pons, hypothalamus, were measured.

Results

NPS 10 nmol icv prolonged hot plate (%MPE) but not tail flick latency at 30 and 40 min after administration. DSP-4 50 mg/kg decreased noradrenaline content in the all 3 regions. The NA depletion inhibited NPS analgesic effect in the hot plate test but not tail flick test. There was a significant correlation between hot plate latency (percentage of maximum possible effect: %MPE) with NPS 10 nmol and NA content in the cerebral cortex (p = 0.017, r 2 = 0.346) which noradrenergic innervation arisen mainly from the LC. No other regions had the correlation.

Conclusions

NPS analgesia interacts with LC noradrenergic neuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ruzza C, Calo G, Di Maro S, Pacifico S, Trapella C, Salvadori S, Preti D, Guerrini R. Neuropeptide S receptor ligands: a patent review (2005–2016). Expert Opin Ther Pat. 2017;27:347–62.

    Article  CAS  PubMed  Google Scholar 

  2. Rizzi A, Vergura R, Marzola G, Ruzza C, Guerrini R, Salvadori S, Regoli D, Calo G. Neuropeptide S is a stimulatory anxiolytic agent: a behavioural study in mice. Br J Pharmacol. 2008;154:471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dine J, Ionescu IA, Stepan J, Yen YC, Holsboer F, Landgraf R, Eder M, Schmidt U. Identification of a role for the ventral hippocampus in neuropeptide S-elicited anxiolysis. PLoS ONE. 2013;8:e60219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ, de Lecea L, Civelli O. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron. 2004;43:487–97.

    Article  CAS  PubMed  Google Scholar 

  5. Yang Y, Zhao M, Zhang Y, Shen X, Yuan Y. Correlation of 5-HTT, BDNF and NPSR1 gene polymorphisms with anxiety and depression in asthmatic patients. Int J Mol Med. 2016;38:65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith JP, Prince MA, Achua JK, Robertson JM, Anderson RT, Ronan PJ, Summers CH. Intensity of anxiety is modified via complex integrative stress circuitries. Psychoneuroendocrinology. 2016;63:351–61.

    Article  PubMed  Google Scholar 

  7. Han RW, Xu HJ, Zhang RS, Wang P, Chang M, Peng YL, Deng KY, Wang R. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation. Neurobiol Learn Mem. 2014;107:32–6.

    Article  CAS  PubMed  Google Scholar 

  8. Ruzza C, Pulga A, Rizzi A, Marzola G, Guerrini R, Calo G. Behavioural phenotypic characterization of CD-1 mice lacking the neuropeptide S receptor. Neuropharmacology. 2012;62:1999–2009.

    Article  CAS  PubMed  Google Scholar 

  9. Beiderbeck DI, Lukas M, Neumann ID. Anti-aggressive effects of neuropeptide S independent of anxiolysis in male rats. Front Behav Neurosci. 2014;8:185.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ruzza C, Asth L, Guerrini R, Trapella C, Gavioli EC. Neuropeptide S reduces mouse aggressiveness in the resident/intruder test through selective activation of the neuropeptide S receptor. Neuropharmacology. 2015;97:1–6.

    Article  CAS  PubMed  Google Scholar 

  11. Ahnaou A, Drinkenburg WH. Neuropeptide-S evoked arousal with electroencephalogram slow-wave compensatory drive in rats. Neuropsychobiology. 2012;65:195–205.

    Article  CAS  PubMed  Google Scholar 

  12. Oishi M, Kushikata T, Niwa H, Yakoshi C, Ogasawara C, Calo G, Guerrini R, Hirota K. Endogenous neuropeptide S tone influences sleep-wake rhythm in rats. Neurosci Lett. 2014;581:94–7.

    Article  CAS  PubMed  Google Scholar 

  13. Roncace V, Polli FS, Zojicic M, Kohlmeier KA. Neuropeptide S (NPS) is a neuropeptide with cellular actions in arousal and anxiety-related nuclei: functional implications for effects of NPS on wakefulness and mood. Neuropharmacology. 2017;126:292–317.

    Article  CAS  PubMed  Google Scholar 

  14. Kushikata T, Yoshida H, Kudo M, Salvadori S, Calo G, Hirota K. The effects of neuropeptide S on general anesthesia in rats. Anesth Analg. 2011;112:845–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kong XP, Wang C, Xie JF, Zhao P, Dai LR, Shao YF, Lin JS, Hou YP. Neuropeptide S reduces propofol- or ketamine-induced slow wave states through activation of cognate receptors in the rat. Neuropeptides. 2017;63:59–66.

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Gao YH, Chang M, Peng YL, Yao J, Han RW, Wang R. Neuropeptide S inhibits the acquisition and the expression of conditioned place preference to morphine in mice. Peptides. 2009;30:234–40.

    Article  PubMed  Google Scholar 

  17. Peng YL, Zhang JN, Chang M, Li W, Han RW, Wang R. Effects of central neuropeptide S in the mouse formalin test. Peptides. 2010;31:1878–83.

    Article  CAS  PubMed  Google Scholar 

  18. Medina G, Ji G, Gregoire S, Neugebauer V. Nasal application of neuropeptide S inhibits arthritis pain-related behaviors through an action in the amygdala. Mol Pain. 2014;10:32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Holanda AD, Asth L, Santos AR, de Guerrini R, de PS-RV, Calo G, Andre E, Gavioli EC. Central adenosine A1 and A2A receptors mediate the antinociceptive effects of neuropeptide S in the mouse formalin test. Life Sci. 2015;120:8–12.

    Article  PubMed  Google Scholar 

  20. Yang F, Peng L, Luo J, Yi H, Hu X. Intra-amygdala microinfusion of neuropeptide S attenuates neuropathic pain and suppresses the response of spinal microglia and astrocytes after spinal nerve ligation in rats. Peptides. 2016;82:26–34.

    Article  CAS  PubMed  Google Scholar 

  21. Clark SD, Duangdao DM, Schulz S, Zhang L, Liu X, Xu YL, Reinscheid RK. Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol. 2011;519:1867–93.

    Article  CAS  PubMed  Google Scholar 

  22. Xu YL, Gall CM, Jackson VR, Civelli O, Reinscheid RK. Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol. 2007;500:84–102.

    Article  CAS  PubMed  Google Scholar 

  23. Okamura N, Garau C, Duangdao DM, Clark SD, Jungling K, Pape HC, Reinscheid RK. Neuropeptide S enhances memory during the consolidation phase and interacts with noradrenergic systems in the brain. Neuropsychopharmacology. 2011;36:744–52.

    Article  CAS  PubMed  Google Scholar 

  24. Pertovaara A. The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol. 2013;716:2–7.

    Article  CAS  PubMed  Google Scholar 

  25. Jones SL. Descending noradrenergic influences on pain. Prog Brain Res. 1991;88:381–94.

    Article  CAS  PubMed  Google Scholar 

  26. Guerrini R, Camarda V, Trapella C, Calo G, Rizzi A, Ruzza C, Fiorini S, Marzola E, Reinscheid RK, Regoli D, Salvadori S. Synthesis and biological activity of human neuropeptide S analogues modified in position 5: identification of potent and pure neuropeptide S receptor antagonists. J Med Chem. 2009;52:524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kushikata T, Kubota T, Fang J, Krueger JM. Glial cell line-derived neurotrophic factor promotes sleep in rats and rabbits. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1001–6.

    Article  CAS  PubMed  Google Scholar 

  28. Zaczek R, Fritschy JM, Culp S, De Souza EB, Grzanna R. Differential effects of DSP-4 on noradrenaline axons in cerebral cortex and hypothalamus may reflect heterogeneity of noradrenaline uptake sites. Brain Res. 1990;522:308–14.

    Article  CAS  PubMed  Google Scholar 

  29. Mohammad Ahmadi Soleimani S, Azizi H, Mirnajafi-Zadeh J, Semnanian S. Orexin type 1 receptor antagonism in rat locus coeruleus prevents the analgesic effect of intra-LC met-enkephalin microinjection. Pharmacol Biochem Behav. 2015;136:102–6.

    Article  CAS  PubMed  Google Scholar 

  30. Ross SB, Stenfors C. DSP4, a selective neurotoxin for the locus coeruleus noradrenergic system. A review of its mode of action. Neurotox Res. 2015;27:15–30.

    Article  CAS  PubMed  Google Scholar 

  31. Veilleux-Lemieux D, Castel A, Carrier D, Beaudry F, Vachon P. Pharmacokinetics of ketamine and xylazine in young and old Sprague–Dawley rats. J Am Assoc Lab Anim Sci. 2013;52:567–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971;367:1–48.

    Article  CAS  PubMed  Google Scholar 

  33. Kudo T, Kushikata T, Kudo M, Kudo T, Hirota K. A central neuropathic pain model by DSP-4 induced lesion of noradrenergic neurons: preliminary report. Neurosci Lett. 2010;481:102–4.

    Article  CAS  PubMed  Google Scholar 

  34. Ossipov MH, Kovelowski CJ, Nichols ML, Hruby VJ, Porreca F. Characterization of supraspinal antinociceptive actions of opioid delta agonists in the rat. Pain. 1995;62:287–93.

    Article  CAS  PubMed  Google Scholar 

  35. Viguier F, Michot B, Hamon M, Bourgoin S. Multiple roles of serotonin in pain control mechanisms—implications of 5-HT(7) and other 5-HT receptor types. Eur J Pharmacol. 2013;716:8–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants-in-aid for scientific research (23592242, 24659690, 25462394 and 26462327) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Grant for Hirosaki University Institutional Research.

Author information

Authors and Affiliations

Authors

Contributions

KJ performed data collection, data analysis and prepare the manuscript. KJ approved the final manuscript. KJ attests to the integrity of the original data and the analysis reported in this manuscript. TeK conducted of the study, performed data collection, and prepared the manuscript. TeK approved the final manuscript. TeK attests to the integrity of the original data and the analysis reported in this manuscript. TeK is the archival author. TaK helped design the study and performed data collection, data analysis. TaK approved the final manuscript. GC helped design the study and prepare the manuscript. GC approved the final manuscript. RG helped design the study and prepared the synthesis of Neuropeptide S. RG approved the final manuscript. KH performed data analysis and prepared the manuscript. KH approved the final manuscript.

Corresponding author

Correspondence to Tetsuya Kushikata.

Ethics declarations

Conflict of interest

Kei Jinushi: None. Tetsuya Kushikata: Grants-in-Aid for surveillance of academic research activity in Japan from Japan Society for the Promotion of Science Nos. 23592242, 24659690, 25462394 and 26462327. Takashi Kudo: None. Girolamo Calo: None. Remo Guerrini: None. Kazuyoshi Hirota: Grants-in-Aid for surveillance of academic research activity in Japan from Japan Society for the Promotion of Science No. 24659690.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinushi, K., Kushikata, T., Kudo, T. et al. Central noradrenergic activity affects analgesic effect of Neuropeptide S. J Anesth 32, 48–53 (2018). https://doi.org/10.1007/s00540-017-2427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-017-2427-y

Keywords

Navigation